Difference between revisions of "KA650 Main Memory System"

From Computer History Wiki
Jump to: navigation, search
(Initial info dump)
 
(mostly cleaned up/reformatted. Table at bottom needs some more work)
Line 1: Line 1:
DEC MS650-AA: NOTES ON TROUBLESHOOTING, REPAIR, AND THEORY OF OPERATION
+
This page contains notes on troubleshooting, repair, and theory of operation of the DEC KA650/MS650 memory subsystem.
  
OVERVIEW
+
==Overview==
  
The MS650-AA memory card is intended to be used with the DEC KA650 VAX CPU, as
+
The MS650-AA and MS650-BA memory module are intended to be used with the DEC KA650 VAX CPU, as the name might suggest. These quad width cards contain 8MB and 16MB of RAM for the VAX, respectively, complete with ECC.
the name might suggest. The quad width card contains 8MB of memory for the VAX,
 
complete with ECC.
 
  
THEORY OF OPERATION
+
==Theory of Operation==
MEMORY CONTROLLER GENERAL ARCHITECTURE AND ORGANIZATION
 
The CMCTL IC is the DRAM controller for the KA650 CPU. It has 10 address line
 
outputs, 39 data I/O, 4 CAS lines, 4 RAS lines, a WE pin, and an SE pin. Also
 
available to the RAM card are the inverse of the 20th and 21st address lines,
 
which are used as rank selection when using 256kxX DRAMs. The data lines are
 
provided to the RAM cards through a 50 conductor ribbon cable, while the rest of
 
the control lines are provided through the CD interconnect on the backplane.
 
  
The 10 address lines carry the row address on the rising edge of a RAS line,
+
===Memory Controller General Architecture and Organization===
followed by the column address on the rising edge of a CAS line.
 
  
The 39 data I/O carry the 32 data and 7 ECC bits for the RAM
+
====Memory Control Signals Provided by the CMCTL====
 +
The CMCTL IC is the DRAM controller for the KA650 CPU. It has 10 address line outputs, 39 memory data I/O (MD), 4 CAS outputs, 4 RAS outputs, a WE pin, and an SE pin. Also available to the RAM card are the inverse of the 20th and 21st address lines (XA20 & XA21), which are used as bank selection when using 256kxX DRAMs. The data lines are provided to the RAM cards through a 50 conductor ribbon cable, while the rest of the control lines are provided through the CD interconnect on the backplane.
  
The 4 CAS (Column Address Strobe) lines allow strobing the column address on up
+
The 10 address lines carry the row address on the rising edge of a RAS line, followed by the column address on the rising edge of a CAS line.
to 4 separate memory cards.
 
  
The 4 RAS (Row Address Strobe) lines allow selection of up to 4 banks on a
+
The 39 data I/O carry the 32 data and 7 ECC bits for the RAM.
single memory card.
 
  
The WE (Write Enable) pin indicates that the CMCTL is writing to memory, rather
+
The 4 CAS (Column Address Strobe) lines allow strobing the column address on up to 4 separate memory modules.
than reading.
 
  
The SE (Strobe Enable?) pin seems to indicate that the CMCTL is refreshing
+
The 4 RAS (Row Address Strobe) lines allow selection of up to 4 banks on a single memory module.
memory.
 
  
The XA20 and XA21 lines are the inverse of the latched address lines from the
+
The WE (Write Enable) pin indicates that the CMCTL is writing to memory, rather than reading.
CDAL bus.
 
  
Note that many of the above control lines are inverse logic from what is
+
The SE (Strobe Enable?) pin seems to indicate that the CMCTL is refreshing memory. This is necessary for the 8MB card to correctly strobe the RAS lines of each rank during a refresh cycle, due to the extra RAS gating circuitry necessary on cards with 256kxX DRAMs.
normally used to drive DRAMs; in particular, CAS, RAS, and WE lines are inverted
 
from the normal JEDEC DRAM convention of active low /RAS, /CAS, and /WE.
 
  
 +
The XA20 and XA21 lines are the inverse of the latched address lines from the CDAL bus.
  
Due to the 10 bit address bus using conventional multiplexed row and column DRAM
+
Note that many of the above control lines are inverse logic from what is normally used to drive DRAMs; in particular, CAS, RAS, and WE lines are inverted from the normal JEDEC DRAM convention of active low /RAS, /CAS, and /WE.
addressing, an effective 20 bit address is formed. This allows the CMCTL to
 
address up to 1MWord per bank.
 
  
By strobing different pairings of RAS and CAS (RAS0+CAS0 is one bank, while
+
====Memory Ranks & Banks====
RAS0+CAS1 is another bank, while RAS1+CAS0 is yet another bank), the CMCTL
 
supports up to 16 banks of RAM, each 1Mx39. Each bank is thus 4MB of memory once
 
ECC overhead is accounted for. This puts a 64MB cap on the maximum amount of
 
memory the CMCTL can address (16 banks of 4MB).
 
  
When 256kxX DRAMs are used in place of 1MxX DRAMs, each 1Mx39 bank is divided
+
Due to the 10 bit address bus using conventional multiplexed row and column DRAM addressing, an effective 20 bit address is formed. This allows the CMCTL to address up to 1MWord per rank.
into 4 ranks of 256kx39. Each rank is selected by XA20 and XA21, which are
 
provided to the RAM cards via the CD interconnect. These address bits appear to
 
only be valid on the risng edge of RAS. Before CAS has strobed, the bits have
 
generally already changed since these are derived from the CDAL bus of the VAX
 
CPU. These bits are used to gate the /RAS lines to the DRAMs ensuring that only
 
the selected rank is addressed. The /CAS line for the card is not affected.
 
  
The MS650-AA card contains 312 256kx1 ZIP DRAMs, organized into 8 ranks of
+
By strobing different pairings of RAS and CAS (RAS0+CAS0 is one rank, while RAS0+CAS1 is another rank, while RAS1+CAS0 is yet another rank), the CMCTL supports up to 16 ranks of RAM, each 1Mx39. Each rank is thus 4MB of memory once ECC overhead is accounted for. This puts a 64MB cap on the maximum amount of memory the CMCTL can address (16 ranks of 4MB).
256kx39. As previously mentioned, one memory bank as addressed by the CMCTL
 
memory controller consists of 4 ranks, making up a total of 1MWord of memory per
 
bank. Each DRAM on the card corresponds to one bit of the 39 bit word within a
 
1MB address region of the VAX.
 
  
ADDRESSING
+
When 256kxX DRAMs are used in place of 1MxX DRAMs, each 1Mx39 rank is further divided into 4 banks of 256kx39. Each bank is selected by XA20 and XA21, which are provided to the RAM cards via the CD interconnect. These address bits appear to only be valid on the rising edge of RAS. Before CAS has strobed, the bits have generally already changed since these are derived from the CDAL bus of the VAX CPU. These bits are used to gate the /RAS lines to the DRAMs ensuring that only the selected bank is addressed. The /CAS line for the card is not affected.
  
The CMCTL appears to convert 32 bit VAX addresses into DRAM addressing as
+
The MS650-AA card contains 312 256kx1 ZIP DRAMs, organized into 8 banks of 256kx39. As previously mentioned, one memory rank as addressed by the CMCTL memory controller consists of 4 banks, making up a total of 1MWord of memory per rank. Each DRAM on the card corresponds to one bit of the 39 bit word within a 1MB address region of the VAX.
follows:
 
  
A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A09 A08 A07 A06 A05 A04 A03 A02
+
===Addressing===
R09     R08 R07 R06 R05 R04 R03 R02 R01 R00
+
 
    C09                                     C08 C07 C06 C05 C04 C03 C02 C01 C00
+
The CMCTL appears to convert 32 bit VAX addresses into DRAM addressing as follows:
 +
 
 +
{| border=1 width=90% style="text-align:center"
 +
| A21 || A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13 || A12 || A11 || A10 || A09 || A08 || A07 || A06 || A05 || A04 || A03 || A02
 +
|-
 +
| width=2.5% | R09  
 +
| width=2.5% |
 +
| width=2.5% | R08
 +
| width=2.5% | R07
 +
| width=2.5% | R06
 +
| width=2.5% | R05
 +
| width=2.5% | R04
 +
| width=2.5% | R03
 +
| width=2.5% | R02
 +
| width=2.5% | R01
 +
| width=2.5% | R00
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
|-
 +
| width=2.5% | 
 +
| width=2.5% | C09
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% |
 +
| width=2.5% | C08
 +
| width=2.5% | C07
 +
| width=2.5% | C06
 +
| width=2.5% | C05
 +
| width=2.5% | C04
 +
| width=2.5% | C03
 +
| width=2.5% | C02
 +
| width=2.5% | C01
 +
| width=2.5% | C00
 +
|}
  
 
Axx are VAX address lines
 
Axx are VAX address lines
 
Rxx are DRAM row address bits
 
Rxx are DRAM row address bits
Cxx ard DRAM column address bits
+
Cxx are DRAM column address bits
  
This addressing scheme is used to ensure that 256kxX DRAMs (which use only 9 bit
+
This addressing scheme is used to ensure that 256kxX DRAMs (which use only 9 bit row and column addresses) are still supported for use with the CMCTL.
row and column addresses) are still supported for use with the CMCTL.
 
  
It is, of course, still up to the CMCTL to determine which banks are selected by
+
It is, of course, still up to the CMCTL to determine which ranks are selected by the upper bits of a given physical address. This is determined by the MEMCSR0-15 registers, which seem to specify whether or not a bank is present, as well as what base address it resides at. It may perform other functions, but it does not seem to be documented in available documentation.
the upper bits of a given physical address. This is determined by the MEMCSR0-15
 
registers, which seem to specify whether or not a bank is present, as well as
 
what base address it resides at. It may perform other functions, but it does not
 
seem to be documented in available documentation.
 
  
CAS AND RAS LINES
+
===CAS and RAS Signals===
  
Each 16MB or 8MB memory card for the KA650 uses one CAS line in its entirety.
+
Each 16MB or 8MB memory card for the KA650 uses one CAS line in its entirety. This is why a maximum of 4 cards may be used in a KA650 system. Each RAM card uses the first CAS line, and passes the remaining lines on to the next card, shifted down one bit. So for example, the first card gets CAS0 CAS1 CAS2 CAS3, in that order. It uses CAS0 and passes CAS1 CAS2 and CAS3 on to the next card, in that order. The next card uses CAS1 and passes on CAS2 and CAS3. This repeats until 4 cards have used up all of the available CAS lines.
This is why a maximum of 4 cards may be used in a KA650 system. Each RAM card
 
uses the first CAS line, and passes the remaining lines on to the next card,
 
shifted down one bit. So for example, the first card gets CAS0 CAS1 CAS2 CAS3,
 
in that order. It uses CAS0 and passes CAS1 CAS2 and CAS3 on to the next card,
 
in that order. The next card uses CAS1 and passes on CAS2 and CAS3. This repeats
 
until 4 cards have used up all of the available CAS lines.
 
  
The CAS line is not gated in any way on the MS650-AA. The CAS line is simply
+
The CAS line is not gated in any way on the MS650-AA. The CAS line is simply buffered, inverted to match the polarity of the DRAMs, and distributed to all DRAMs on the card (likely with some hierarchical buffering methodology).
buffered, inverted to match the polarity of the DRAMs, and distributed to all
 
DRAMs on the card (likely with some hierarchical buffering methodology)
 
  
REFRESH
+
===Refresh===
  
DRAMs are built using one tiny MOS capacitor for each bit. These capacitors leak
+
DRAMs are built using one tiny MOS capacitor for each bit. These capacitors leak slightly and need to be periodically refreshed. DRAM rows are refreshed by simply addressing a row. Any row access refreshes that row, no column needs to be strobed for a refresh.
slightly and need to be periodically refreshed. DRAM rows are refreshed by
 
simply addressing a row. Any row access refreshes that row, no column needs to
 
be strobed for a refresh.
 
  
As such, during refresh cycles, the CMCTL places a row address to be refreshed
+
As such, during refresh cycles, the CMCTL places a row address to be refreshed on the address bus, asserts SE, and asserts all RAS lines for several clock cycles. The purpose of the SE signal is so that RAM cards with 256kxX DRAMs do not gate any of the /RAS lines going to the DRAMs, or else only whatever DRAM bank is (randomly) addressed by XA20 and XA21 would be refreshed.
on the address bus, asserts SE, and asserts all RAS lines for several clock
 
cycles. The purpose of the SE signal is so that RAM cards with 256kxX DRAMs do
 
not gate any of the /RAS lines going to the DRAMs, or else only whatever DRAM
 
rank is (randomly) addressed by XA20 and XA21 would be refreshed.
 
  
ECC
+
===ECC===
  
The ECC supported by the CMCTL, according to the KA650 technical manual, has the
+
The ECC supported by the CMCTL, according to the KA650 technical manual, has the ability to detect and correct single data bit errors, detect single ECC bit errors, and detect double-bit data errors.
ability to detect and correct single data bit errors, detect single ECC bit
 
errors, and detect double-bit data errors.
 
  
ECC is generally based on producing parity bits of various collections of data
+
ECC is generally based on producing parity bits of various collections of data bits. Since parity is based around the simple XOR, it is a linear operation in a manner of speaking. Luckily this means we can determine the ECC equations based on a number of sample data patterns and the respective ECC bits, such as the ECC produced for 0 data, and data with only one bit in the word set. By comparing the ECC for each test pattern to that of 0, we can determine which ECC bits each bit in the data word affects.
bits. Since parity is based around the simple XOR, it is a linear operation in a
 
manner of speaking. Luckily this means we can determine the ECC equations based
 
on a number of sample data patterns and the respective ECC bits, such as the ECC
 
produce for 0 data, and data with only one bit in the word set. By comparing the
 
ECC for each test pattern to that of 0, we can determine which ECC bits each bit
 
in the data word affects.
 
  
data LSB ecc LSB
+
{| border=1 width=90% style="text-align:center"
0000 0000 0000 0000 0000 0000 0000 0000 0111100
+
|| bit || colspan=8 | data || ECC
00 0000 0000 0000 0000 0000 0000 0000 0001 1100100
+
|-
01 0000 0000 0000 0000 0000 0000 0000 0010 0100000 <--
+
| || MSB || colspan = 6 | || LSB ||
02 0000 0000 0000 0000 0000 0000 0000 0100 0100110
+
|-
03 0000 0000 0000 0000 0000 0000 0000 1000 1100010
+
| -  || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0111100
04 0000 0000 0000 0000 0000 0000 0001 0000 0100011
+
|-
05 0000 0000 0000 0000 0000 0000 0010 0000 1100111
+
| 0  || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0001 || 1100100
06 0000 0000 0000 0000 0000 0000 0100 0000 1100001
+
|-
07 0000 0000 0000 0000 0000 0000 1000 0000 0100101
+
| 1  || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0010 || 0100000
08 0000 0000 0000 0000 0000 0001 0000 0000 1010100
+
|-
09 0000 0000 0000 0000 0000 0010 0000 0000 0010000 <--
+
| 2  || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0100 || 0100110
10 0000 0000 0000 0000 0000 0100 0000 0000 0010110
+
|-
11 0000 0000 0000 0000 0000 1000 0000 0000 1010010
+
| 3  || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 1000 || 1100010
12 0000 0000 0000 0000 0001 0000 0000 0000 0010011
+
|-
13 0000 0000 0000 0000 0010 0000 0000 0000 1010111
+
| 4  || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0001 || 0000 || 0100011
14 0000 0000 0000 0000 0100 0000 0000 0000 1010001
+
|-
15 0000 0000 0000 0000 1000 0000 0000 0000 0010101
+
| 5  || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0010 || 0000 || 1100111
16 0000 0000 0000 0001 0000 0000 0000 0000 1001100
+
|-
17 0000 0000 0000 0010 0000 0000 0000 0000 0001000 <--
+
| 6  || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0100 || 0000 || 1100001
18 0000 0000 0000 0100 0000 0000 0000 0000 0001110
+
|-
19 0000 0000 0000 1000 0000 0000 0000 0000 1001010
+
| 7  || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 1000 || 0000 || 0100101
20 0000 0000 0001 0000 0000 0000 0000 0000 0001011
+
|-
21 0000 0000 0010 0000 0000 0000 0000 0000 1001111
+
| 8  || 0000 || 0000 || 0000 || 0000 || 0000 || 0001 || 0000 || 0000 || 1010100
22 0000 0000 0100 0000 0000 0000 0000 0000 1001001
+
|-
23 0000 0000 1000 0000 0000 0000 0000 0000 0001101
+
| 9  || 0000 || 0000 || 0000 || 0000 || 0000 || 0010 || 0000 || 0000 || 0010000
24 0000 0001 0000 0000 0000 0000 0000 0000 0000100 <--
+
|-
25 0000 0010 0000 0000 0000 0000 0000 0000 1000000 <--
+
| 10 || 0000 || 0000 || 0000 || 0000 || 0000 || 0100 || 0000 || 0000 || 0010110
26 0000 0100 0000 0000 0000 0000 0000 0000 1000110
+
|-
27 0000 1000 0000 0000 0000 0000 0000 0000 0000010 <--
+
| 11 || 0000 || 0000 || 0000 || 0000 || 0000 || 1000 || 0000 || 0000 || 1010010
28 0001 0000 0000 0000 0000 0000 0000 0000 1000011
+
|-
29 0010 0000 0000 0000 0000 0000 0000 0000 0000111
+
| 12 || 0000 || 0000 || 0000 || 0000 || 0001 || 0000 || 0000 || 0000 || 0010011
30 0100 0000 0000 0000 0000 0000 0000 0000 0000001 <--
+
|-
31 1000 0000 0000 0000 0000 0000 0000 0000 1000101
+
| 13 || 0000 || 0000 || 0000 || 0000 || 0010 || 0000 || 0000 || 0000 || 1010111
 +
|-
 +
| 14 || 0000 || 0000 || 0000 || 0000 || 0100 || 0000 || 0000 || 0000 || 1010001
 +
|-
 +
| 15 || 0000 || 0000 || 0000 || 0000 || 1000 || 0000 || 0000 || 0000 || 0010101
 +
|-
 +
| 16 || 0000 || 0000 || 0000 || 0001 || 0000 || 0000 || 0000 || 0000 || 1001100
 +
|-
 +
| 17 || 0000 || 0000 || 0000 || 0010 || 0000 || 0000 || 0000 || 0000 || 0001000
 +
|-
 +
| 18 || 0000 || 0000 || 0000 || 0100 || 0000 || 0000 || 0000 || 0000 || 0001110
 +
|-
 +
| 19 || 0000 || 0000 || 0000 || 1000 || 0000 || 0000 || 0000 || 0000 || 1001010
 +
|-
 +
| 20 || 0000 || 0000 || 0001 || 0000 || 0000 || 0000 || 0000 || 0000 || 0001011
 +
|-
 +
| 21 || 0000 || 0000 || 0010 || 0000 || 0000 || 0000 || 0000 || 0000 || 1001111
 +
|-
 +
| 22 || 0000 || 0000 || 0100 || 0000 || 0000 || 0000 || 0000 || 0000 || 1001001
 +
|-
 +
| 23 || 0000 || 0000 || 1000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0001101
 +
|-
 +
| 24 || 0000 || 0001 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000100
 +
|-
 +
| 25 || 0000 || 0010 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 1000000
 +
|-
 +
| 26 || 0000 || 0100 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 1000110
 +
|-
 +
| 27 || 0000 || 1000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000010
 +
|-
 +
| 28 || 0001 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 1000011
 +
|-
 +
| 29 || 0010 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000111
 +
|-
 +
| 30 || 0100 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000001
 +
|-
 +
| 31 || 1000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 0000 || 1000101
 +
|}
  
The results of this are depicted below. The basic result is that toggling one of
 
the bits that belongs to the ECC bit group will result in that ECC bit toggling
 
as well.
 
  
 +
The results of this are depicted below. The basic result is that toggling one of the bits that belongs to the ECC bit group will result in that ECC bit toggling as well.
  
MD32 -             04,05,06,07,            12,13,14.15,            20,21,22,23,            28,29,30,31
+
{| border=1 width=90% style="text-align:center"
MD33 -       02,03,04,05,            10,11,12,13,            18,19,20,21,            26,27,28,29,   
+
|| ECC bit || colspan=3 | MSB || colspan=26 | || colspan=3 | LSB
MD34 -   01,  03,04,  06,      09,  11,12,  14,      17,  19,20,  22,      25,  27,28,  30, 
+
|-
MD35 - 00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,                        24,25,26,27,28,29,30,31
+
|MD32
MD36 - 00,01,02,03,04,05,06,07,                        16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
+
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
MD37 -                         08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
+
|| || || ||
MD39 - 00,      03,  05,06,  08,      11,  13,14,  16,      19,  21,22,      25,26,  28,      31
+
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
                                                                                          ^
+
|| || || ||
                                                                                          |
+
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
                                                                                          |
+
|| || || ||
                                                                                  note flipping bit 28
+
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
                                                                                  flips all ECC bits
+
|| || || ||
 +
|-
 +
|MD33
 +
| || ||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X|| ||
 +
| || ||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X|| ||
 +
| || ||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X|| ||
 +
| || ||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X|| ||
 +
|-
 +
|MD34
 +
| ||style="background-color: #FFFF00;"|X|| ||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X|| ||style="background-color: #FFFF00;"|X||
 +
| ||style="background-color: #FFFF00;"|X|| ||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X|| ||style="background-color: #FFFF00;"|X||
 +
| ||style="background-color: #FFFF00;"|X|| ||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X|| ||style="background-color: #FFFF00;"|X||
 +
| ||style="background-color: #FFFF00;"|X|| ||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X|| ||style="background-color: #FFFF00;"|X||
 +
|-
 +
|MD35
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
| || || ||
 +
| || || ||
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|-
 +
|MD36
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
| || || ||
 +
| || || ||
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|-
 +
|MD37
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
|style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X
 +
| || || ||
 +
| || || ||
 +
|-
 +
|MD38
 +
|style="background-color: #FFFF00;"|X|| || ||style="background-color: #FFFF00;"|X
 +
| ||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||
 +
| ||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||
 +
|style="background-color: #FFFF00;"|X|| || ||style="background-color: #FFFF00;"|X
 +
| ||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||
 +
|style="background-color: #FFFF00;"|X|| || ||style="background-color: #FFFF00;"|X
 +
| ||style="background-color: #FFFF00;"|X||style="background-color: #FFFF00;"|X||  
 +
|style="background-color: #FFFF00;"|X|| || ||style="background-color: #FFFF00;"|X
 +
|}
  
An interesting and potentially useful point to note is that flipping bit 28
+
An interesting and potentially useful point to note is that flipping bit 28 happens to flip all of the ECC bits together. Another interesting point is that inverting the entire data word produces the same ECC.
happens to flip all of the ECC bits together. Another interesting point is that
 
inverting the entire data word produces the same ECC.
 
  
From this information, we can derive some data patterns that produce useful ECC
+
From this information, we can derive some data patterns that produce useful ECC combinations, such as ECC of all zeroes, all ones, only one bit set, and only one bit clear. Looking at the table above, we got lucky and examples of many of these combinations were found by chance. In particular, we happened upon data combinations that produced every possibility of 1 ECC bit set. These, combined with the fact that we can toggle bit 28 to get the inverse ECC bits, gives us a set of data patterns which produce ECC with only one bit clear. From here, we only need to derive a combination which produces all-zero ECC, and from that, derive all-one ECC.
combinations, such as ECC of all zeroes, all ones, only one bit set, and only
 
one bit clear. Looking at the table above, we got lucky and examples of many of
 
these combinations were found by chance. In particular, we happened upon data
 
combinations that produced every possibility of 1 ECC bit set. These, combined
 
with the fact that we can toggle bit 28 to get the inverse ECC bits, gives us a
 
set of data patterns which produce ECC with only one bit clear. From here, we
 
only need to derive a combination which produces all-zero ECC, and from that,
 
derive all-one ECC.
 
  
Starting with the ECC for bit 31 set, we can toggle single bits at a time until
+
Starting with the ECC for bit 31 set, we can toggle single bits at a time until we find a combination that produces the ECC we want.
we find a combination that produces the ECC we want.
+
<nowiki>
 
+
31 1000 0000 0000 0000 0000 0000 0000 0000 1000101
31 1000 0000 0000 0000 0000 0000 0000 0000 1000101
 
 
     1000 0000 0000 0000 0000 0000 0000 0001 0011101
 
     1000 0000 0000 0000 0000 0000 0000 0001 0011101
 
     1000 0000 0000 0000 0000 0010 0000 0001 0110001
 
     1000 0000 0000 0000 0000 0010 0000 0001 0110001
 
     1000 0000 1000 0000 0000 0010 0000 0001 0000000 <--
 
     1000 0000 1000 0000 0000 0010 0000 0001 0000000 <--
 
     1001 0000 1000 0000 0000 0010 0000 0001 1111111 <--
 
     1001 0000 1000 0000 0000 0010 0000 0001 1111111 <--
 +
</nowiki>
  
The summary of these useful ECC combinations is tabulated below (data in hex,
+
The summary of these useful ECC combinations is tabulated below (data in hex, ECC in binary)
ECC in binary)
 
  
 
useful ECC combinations:
 
useful ECC combinations:
ECC data
 
0000000 80800201
 
0000001 40000000
 
0000010 08000000
 
0000100 01000000
 
0001000 00020000
 
0010000 00000200
 
0100000 00000002
 
1000000 02000000
 
1111111 90800201
 
1111110 50000000
 
1111101 18000000
 
1111011 11000000
 
1110111 10020000
 
1101111 10000200
 
1011111 10000002
 
0111111 12000000
 
  
KA650 VAX FIRMWARE MEMORY TESTS
+
{| border=1 style="text-align:center"
 +
| ECC (binary) || data (hex)
 +
|-
 +
| 0000000      || 80800201
 +
|-
 +
| 0000001      || 40000000
 +
|-
 +
| 0000010      || 08000000
 +
|-
 +
| 0000100      || 01000000
 +
|-
 +
| 0001000      || 00020000
 +
|-
 +
| 0010000      || 00000200
 +
|-
 +
| 0100000      || 00000002
 +
|-
 +
| 1000000      || 02000000
 +
|-
 +
| 1111111      || 90800201
 +
|-
 +
| 1111110      || 50000000
 +
|-
 +
| 1111101      || 18000000
 +
|-
 +
| 1111011      || 11000000
 +
|-
 +
| 1110111      || 10020000
 +
|-
 +
| 1101111      || 10000200
 +
|-
 +
| 1011111      || 10000002
 +
|-
 +
| 0111111      || 12000000
 +
|}
  
Many of the tests built in to the firmware of the VAX can be quite thorough, if
+
==KA650 VAX Firmware Memory Tests==
used properly. The tests can be accessed by the TEST command in the monitor,
 
abbreviated to 't'.
 
  
The tests report diagnostic information upon failure, encoded simply as a number
+
Many of the tests built in to the firmware of the VAX can be quite thorough, if used properly. The tests can be accessed by the TEST command in the monitor, abbreviated to 't'.
of values in registers and memory locations on the stack. With the proper
 
documentation, these values could be decoded to determine the problem. Lacking
 
that documentation, I was able to reverse engineer enough of one test that was
 
failing to understand it's ouput.
 
  
TEST 48: MEM_Addr_shrts
+
The tests report diagnostic information upon failure, encoded simply as a number of values in registers and memory locations on the stack. With the proper documentation, these values could be decoded to determine the problem. Lacking that documentation, I was able to reverse engineer enough of one test that was failing to understand it's output.
This test is normally used to check for shorted address lines. It will fill the
 
memory with a pattern first, then it will check each word in order to see if it
 
is still the same pattern. After checking a word, it will check the CMCTL status
 
register to ensure there were no detected errors. Then it will replace the word
 
with another pattern (usually mostly an inverse of the first pattern).
 
  
If any address line is shorted, when the test writes the second pattern, it will
+
===TEST 48: MEM_Addr_shrts===
affect another location in memory. When that location is encountered, it will
+
 
read as the wrong data thus showing the issue. However, the test is also capable
+
This test is normally used to check for shorted address lines. It will fill the memory with a pattern first, then it will check each word in order to see if it is still the same pattern. After checking a word, it will check the CMCTL status register to ensure there were no detected errors. Then it will replace the word with another pattern (usually mostly an inverse of the first pattern).
of detecting stuck bits the way it is designed, and this test happened to find
+
 
all DRAM errors in my case.
+
If any address line is shorted, when the test writes the second pattern, it will affect another location in memory. When that location is encountered, it will read as the wrong data thus showing the issue. However, the test is also capable of detecting stuck bits the way it is designed, and this test happened to find all DRAM errors in my case.
  
 
The output when the test encounters an error looks like the following:
 
The output when the test encounters an error looks like the following:
  
 +
<nowiki>
 
>>>t 48
 
>>>t 48
  
Line 266: Line 344:
  
 
>>>
 
>>>
 +
</nowiki>
  
I figured out the meaning of some of these registers for this test. First of
+
I figured out the meaning of some of these registers for this test. First of all, P10 indicates an address where presumably DEC personnel would check a source listing to find out the exact meaning of the rest of the values shown. The meanings of the registers I have found are only valid for this routine, located near 2005311F.
all, P10 indicates an address where presumably DEC personnel would check a
 
source listing to find out the exact meaning of the rest of the values shown.
 
The meanings of the registers I have found are only valid for this routine,
 
located near 2005311F.
 
  
r0 - contents of memory at address being tested
+
{| border=1 style="text-align:center"
r1 - address being tested
+
| register || description
r2 - expected pattern from memory being tested
+
|-
r5 - pattern to replace location with
+
| r0       || contents of memory at address being tested
r6 - address of CMCTL MEMCSR16 (a diagnostic register)
+
|-
P8 - contents of MEMCSR16
+
| r1       || address being tested
 +
|-
 +
| r2       || expected pattern from memory being tested
 +
|-
 +
| r5       || pattern to replace location with
 +
|-
 +
| r6       || address of CMCTL MEMCSR16 (a diagnostic register)
 +
|-
 +
| P8       || contents of MEMCSR16
 +
|}
  
MEMCSR16 REGISTER
+
==MEMCSR16 Register==
  
 
The MEMCSR16 register gives us information on what kind of memory failure
 
The MEMCSR16 register gives us information on what kind of memory failure
occurred. The bit meanings are as follows, according the the KA650 technical
+
occurred. The bit meanings are as follows, according to the KA650 technical manual:
manual:
 
  
<31> set if uncorrectable error occurred
+
{| border=1 style="text-align:center"
<30> set if multiple uncorrectable errors occurred
+
| bits  || description
<29> set if correctable error occurred
+
|-
<28:9> page address where error occurred (pages are 512 bytes)
+
| <31>   || set if uncorrectable error occurred
<8> set if error ocurred during DMA
+
|-
<7> set if CDAL bus parity error occurred
+
| <30>   || set if multiple uncorrectable errors occurred
<6:0> error syndrome: a unique combination is produced here for each possible
+
|-
      single bit error
+
| <29>   || set if correctable error occurred
 +
|-
 +
| <28:9> || page address where error occurred (pages are 512 bytes)
 +
|-
 +
| <8>   || set if error ocurred during DMA
 +
|-
 +
| <7>   || set if CDAL bus parity error occurred
 +
|-
 +
| <6:0> || error syndrome: a unique combination is produced here for each possible single bit error
 +
|}
  
writing 1s to bits 31, 30, 29, 8, or 7 of MEMCSR16 resets those bits. bits 28:9
+
writing 1s to bits 31, 30, 29, 8, or 7 of MEMCSR16 resets those bits. bits 28:9 and 6:0 are read only.
and 6:0 are read only.
 
  
 
The MEMCSR registers can be read with test 9c.
 
The MEMCSR registers can be read with test 9c.
  
The error syndrome is particularly useful for troubleshooting memory errors as
+
===Error Syndrome Field===
it can tell us exactly which bit had the error. A list of the syndromes and the
 
corresponding bit error is given below, copied and resorted from the KA650 tech
 
manual for convenience.
 
  
syndrome bit position
+
The error syndrome is particularly useful for troubleshooting memory errors as it can tell us exactly which bit had the error. A list of the syndromes and the corresponding bit error is given below.
0000000  no error
 
0000001  32
 
0000010  33
 
0000100  34
 
0000111  result of incorrect check bits written on CDAL parity error
 
0001000  35
 
0010000  36
 
0011001  7
 
0011010  2
 
0011100  1
 
0011111  4
 
0100000  37
 
0101001  15
 
0101010  10
 
0101100  9
 
0101111  12
 
0110001  23
 
0110010  18
 
0110100  17
 
0110111  20
 
0111000  24
 
0111011  29
 
0111101  30
 
0111110  27
 
1000000  38
 
1011000  0
 
1011011  5
 
1011101  6
 
1011110  3
 
1101000  8
 
1101011  13
 
1101101  14
 
1101110  11
 
1110000  16
 
1110011  21
 
1110101  22
 
1110110  19
 
1111001  31
 
1111010  26
 
1111100  25
 
1111111  28
 
  
ELSE      multibit error
+
{| border=1 style="text-align:center"
 +
| syndrome || bit position or error description
 +
|-
 +
| 0000000  || no error
 +
|-
 +
| 0000001  || 32
 +
|-
 +
| 0000010  || 33
 +
|-
 +
| 0000100  || 34
 +
|-
 +
| 0000111  || result of incorrect check bits written on CDAL parity error
 +
|-
 +
| 0001000  || 35
 +
|-
 +
| 0010000  || 36
 +
|-
 +
| 0011001  || 7
 +
|-
 +
| 0011010  || 2
 +
|-
 +
| 0011100  || 1
 +
|-
 +
| 0011111  || 4
 +
|-
 +
| 0100000  || 37
 +
|-
 +
| 0101001  || 15
 +
|-
 +
| 0101010  || 10
 +
|-
 +
| 0101100  || 9
 +
|-
 +
| 0101111  || 12
 +
|-
 +
| 0110001  || 23
 +
|-
 +
| 0110010  || 18
 +
|-
 +
| 0110100  || 17
 +
|-
 +
| 0110111  || 20
 +
|-
 +
| 0111000  || 24
 +
|-
 +
| 0111011  || 29
 +
|-
 +
| 0111101  || 30
 +
|-
 +
| 0111110  || 27
 +
|-
 +
| 1000000  || 38
 +
|-
 +
| 1011000  || 0
 +
|-
 +
| 1011011  || 5
 +
|-
 +
| 1011101  || 6
 +
|-
 +
| 1011110  || 3
 +
|-
 +
| 1101000  || 8
 +
|-
 +
| 1101011  || 13
 +
|-
 +
| 1101101  || 14
 +
|-
 +
| 1101110  || 11
 +
|-
 +
| 1110000  || 16
 +
|-
 +
| 1110011  || 21
 +
|-
 +
| 1110101  || 22
 +
|-
 +
| 1110110  || 19
 +
|-
 +
| 1111001  || 31
 +
|-
 +
| 1111010  || 26
 +
|-
 +
| 1111100  || 25
 +
|-
 +
| 1111111  || 28
 +
|-
 +
| other    || multibit error
 +
|}
  
TROUBLESHOOTING
+
==TROUBLESHOOTING==
  
We now have all of the information necessary to narrow down which bits in which
+
We now have all of the information necessary to narrow down which bits in which address regions are bad. However, that doesn't do any good for repair unless we also know which physical DRAMs that bit and region correspond to.
address regions are bad. However, that doesn't do any good for repair unless we
 
also know which physical DRAMs that bit and region correspond to.
 
  
Shown below is a diagram of the MS650-AA RAM card, broken up into 11 columns and
+
===MS650-AA===
37 rows. Each spot in this grid contains up to 1 DRAM, but some locations
+
 
contain other circuitry instead.
+
Shown below is a diagram of the MS650-AA RAM card, broken up into 11 columns and 37 rows. Each spot in this grid contains up to 1 DRAM, but some locations contain other circuitry instead.
 +
 
 +
<nowiki>
  
 
     |  A  |  B  |  C  |  D  |  E  |  F  |  G  |  H  |  I  |  J  |  K  |
 
     |  A  |  B  |  C  |  D  |  E  |  F  |  G  |  H  |  I  |  J  |  K  |
Line 401: Line 534:
 
-----------------------------------------------
 
-----------------------------------------------
  
The RAM card uses two RAS lines. During normal initialization of the VAX, the
+
</nowiki>
bank connected to RAS0 will be first in memory, followed by the bank connected
+
 
to RAS1.
+
The MS650-AA RAM card uses two RAS lines. During normal initialization of the VAX, the rank connected to RAS0 will be first in memory, followed by the rank connected to RAS1. Presumably, the MS650-BA card would have 4 ranks.
  
 
RAS0 - first 4MB
 
RAS0 - first 4MB
 
RAS1 - second 4MB
 
RAS1 - second 4MB
  
Based on the bit with the error, as well as the memory region where the error
+
Based on the bit with the error, as well as the memory region where the error occurred, the specific DRAM with the failure can be found and replaced.
occurred, the specific DRAM with the failure can be found and replaced.
 
 
 
Below is a list of the DRAMs sorted by memory region and bit, showing the grid
 
location of the DRAM IC.
 
  
By using the built in tests, along with MEMCSR16, and perhaps some manual
+
Below is a list of the DRAMs sorted by memory region and bit, showing the grid location of the DRAM IC.
DEPOSIT and EXAMINE testing, the bad DRAM should be possible to locate and then,
 
using this table, the DRAM can be replaced.
 
  
 +
By using the built in tests, along with MEMCSR16, and perhaps some manual DEPOSIT and EXAMINE testing, the bad DRAM should be possible to locate and then, using this table, the DRAM can be replaced.
  
A12 - 0XXXXX MD00
+
{| border=1 style="text-align:center"
A11 - 1XXXXX MD00
+
| DRAM || Address || data bit
A10 - 2XXXXX MD00
+
| A12 || 0XXXXX || MD00
A09 - 3XXXXX MD00
+
|A11 - 1XXXXX MD00
A16 - 4XXXXX MD00
+
|A10 - 2XXXXX MD00
A15 - 5XXXXX MD00
+
|A09 - 3XXXXX MD00
A14 - 6XXXXX MD00
+
|A16 - 4XXXXX MD00
A13 - 7XXXXX MD00
+
|A15 - 5XXXXX MD00
A24 - 0XXXXX MD01
+
|A14 - 6XXXXX MD00
A23 - 1XXXXX MD01
+
|A13 - 7XXXXX MD00
A22 - 2XXXXX MD01
+
|A24 - 0XXXXX MD01
A21 - 3XXXXX MD01
+
|A23 - 1XXXXX MD01
A20 - 4XXXXX MD01
+
|A22 - 2XXXXX MD01
A19 - 5XXXXX MD01
+
|A21 - 3XXXXX MD01
A18 - 6XXXXX MD01
+
|A20 - 4XXXXX MD01
A17 - 7XXXXX MD01
+
|A19 - 5XXXXX MD01
A32 - 0XXXXX MD02
+
|A18 - 6XXXXX MD01
A31 - 1XXXXX MD02
+
|A17 - 7XXXXX MD01
A30 - 2XXXXX MD02
+
|A32 - 0XXXXX MD02
A29 - 3XXXXX MD02
+
|A31 - 1XXXXX MD02
A28 - 4XXXXX MD02
+
|A30 - 2XXXXX MD02
A27 - 5XXXXX MD02
+
|A29 - 3XXXXX MD02
A26 - 6XXXXX MD02
+
|A28 - 4XXXXX MD02
A25 - 7XXXXX MD02
+
|A27 - 5XXXXX MD02
B12 - 0XXXXX MD03
+
|A26 - 6XXXXX MD02
B11 - 1XXXXX MD03
+
|A25 - 7XXXXX MD02
B10 - 2XXXXX MD03
+
|B12 - 0XXXXX MD03
B09 - 3XXXXX MD03
+
|B11 - 1XXXXX MD03
A36 - 4XXXXX MD03
+
|B10 - 2XXXXX MD03
A35 - 5XXXXX MD03
+
|B09 - 3XXXXX MD03
A34 - 6XXXXX MD03
+
|A36 - 4XXXXX MD03
A33 - 7XXXXX MD03
+
|A35 - 5XXXXX MD03
B24 - 0XXXXX MD04
+
|A34 - 6XXXXX MD03
B23 - 1XXXXX MD04
+
|A33 - 7XXXXX MD03
B22 - 2XXXXX MD04
+
|B24 - 0XXXXX MD04
B21 - 3XXXXX MD04
+
|B23 - 1XXXXX MD04
B16 - 4XXXXX MD04
+
|B22 - 2XXXXX MD04
B15 - 5XXXXX MD04
+
|B21 - 3XXXXX MD04
B14 - 6XXXXX MD04
+
|B16 - 4XXXXX MD04
B13 - 7XXXXX MD04
+
|B15 - 5XXXXX MD04
B32 - 0XXXXX MD05
+
|B14 - 6XXXXX MD04
B31 - 1XXXXX MD05
+
|B13 - 7XXXXX MD04
B30 - 2XXXXX MD05
+
|B32 - 0XXXXX MD05
B29 - 3XXXXX MD05
+
|B31 - 1XXXXX MD05
B28 - 4XXXXX MD05
+
|B30 - 2XXXXX MD05
B27 - 5XXXXX MD05
+
|B29 - 3XXXXX MD05
B26 - 6XXXXX MD05
+
|B28 - 4XXXXX MD05
B25 - 7XXXXX MD05
+
|B27 - 5XXXXX MD05
C12 - 0XXXXX MD06
+
|B26 - 6XXXXX MD05
C11 - 1XXXXX MD06
+
|B25 - 7XXXXX MD05
C10 - 2XXXXX MD06
+
|C12 - 0XXXXX MD06
C09 - 3XXXXX MD06
+
|C11 - 1XXXXX MD06
C16 - 4XXXXX MD06
+
|C10 - 2XXXXX MD06
C15 - 5XXXXX MD06
+
|C09 - 3XXXXX MD06
C14 - 6XXXXX MD06
+
|C16 - 4XXXXX MD06
C13 - 7XXXXX MD06
+
|C15 - 5XXXXX MD06
C24 - 0XXXXX MD07
+
|C14 - 6XXXXX MD06
C23 - 1XXXXX MD07
+
|C13 - 7XXXXX MD06
C22 - 2XXXXX MD07
+
|C24 - 0XXXXX MD07
C21 - 3XXXXX MD07
+
|C23 - 1XXXXX MD07
E20 - 4XXXXX MD07
+
|C22 - 2XXXXX MD07
D20 - 5XXXXX MD07
+
|C21 - 3XXXXX MD07
C20 - 6XXXXX MD07
+
|E20 - 4XXXXX MD07
B20 - 7XXXXX MD07
+
|D20 - 5XXXXX MD07
C32 - 0XXXXX MD08
+
|C20 - 6XXXXX MD07
C31 - 1XXXXX MD08
+
|B20 - 7XXXXX MD07
C30 - 2XXXXX MD08
+
|C32 - 0XXXXX MD08
C29 - 3XXXXX MD08
+
|C31 - 1XXXXX MD08
C28 - 4XXXXX MD08
+
|C30 - 2XXXXX MD08
C27 - 5XXXXX MD08
+
|C29 - 3XXXXX MD08
C26 - 6XXXXX MD08
+
|C28 - 4XXXXX MD08
C25 - 7XXXXX MD08
+
|C27 - 5XXXXX MD08
D32 - 0XXXXX MD09
+
|C26 - 6XXXXX MD08
D31 - 1XXXXX MD09
+
|C25 - 7XXXXX MD08
D30 - 2XXXXX MD09
+
|D32 - 0XXXXX MD09
D29 - 3XXXXX MD09
+
|D31 - 1XXXXX MD09
D28 - 4XXXXX MD09
+
|D30 - 2XXXXX MD09
D27 - 5XXXXX MD09
+
|D29 - 3XXXXX MD09
D26 - 6XXXXX MD09
+
|D28 - 4XXXXX MD09
D25 - 7XXXXX MD09
+
|D27 - 5XXXXX MD09
D24 - 0XXXXX MD10
+
|D26 - 6XXXXX MD09
D23 - 1XXXXX MD10
+
|D25 - 7XXXXX MD09
D22 - 2XXXXX MD10
+
|D24 - 0XXXXX MD10
D21 - 3XXXXX MD10
+
|D23 - 1XXXXX MD10
D16 - 4XXXXX MD10
+
|D22 - 2XXXXX MD10
D15 - 5XXXXX MD10
+
|D21 - 3XXXXX MD10
D14 - 6XXXXX MD10
+
|D16 - 4XXXXX MD10
D13 - 7XXXXX MD10
+
|D15 - 5XXXXX MD10
D12 - 0XXXXX MD11
+
|D14 - 6XXXXX MD10
D11 - 1XXXXX MD11
+
|D13 - 7XXXXX MD10
D10 - 2XXXXX MD11
+
|D12 - 0XXXXX MD11
D09 - 3XXXXX MD11
+
|D11 - 1XXXXX MD11
E16 - 4XXXXX MD11
+
|D10 - 2XXXXX MD11
E15 - 5XXXXX MD11
+
|D09 - 3XXXXX MD11
E14 - 6XXXXX MD11
+
|E16 - 4XXXXX MD11
E13 - 7XXXXX MD11
+
|E15 - 5XXXXX MD11
E12 - 0XXXXX MD12
+
|E14 - 6XXXXX MD11
E11 - 1XXXXX MD12
+
|E13 - 7XXXXX MD11
E10 - 2XXXXX MD12
+
|E12 - 0XXXXX MD12
E09 - 3XXXXX MD12
+
|E11 - 1XXXXX MD12
E28 - 4XXXXX MD12
+
|E10 - 2XXXXX MD12
E27 - 5XXXXX MD12
+
|E09 - 3XXXXX MD12
E26 - 6XXXXX MD12
+
|E28 - 4XXXXX MD12
E25 - 7XXXXX MD12
+
|E27 - 5XXXXX MD12
E24 - 0XXXXX MD13
+
|E26 - 6XXXXX MD12
E23 - 1XXXXX MD13
+
|E25 - 7XXXXX MD12
E22 - 2XXXXX MD13
+
|E24 - 0XXXXX MD13
E21 - 3XXXXX MD13
+
|E23 - 1XXXXX MD13
F16 - 4XXXXX MD13
+
|E22 - 2XXXXX MD13
F15 - 5XXXXX MD13
+
|E21 - 3XXXXX MD13
F14 - 6XXXXX MD13
+
|F16 - 4XXXXX MD13
F13 - 7XXXXX MD13
+
|F15 - 5XXXXX MD13
E32 - 0XXXXX MD14
+
|F14 - 6XXXXX MD13
E31 - 1XXXXX MD14
+
|F13 - 7XXXXX MD13
E30 - 2XXXXX MD14
+
|E32 - 0XXXXX MD14
E29 - 3XXXXX MD14
+
|E31 - 1XXXXX MD14
F20 - 4XXXXX MD14
+
|E30 - 2XXXXX MD14
F19 - 5XXXXX MD14
+
|E29 - 3XXXXX MD14
F18 - 6XXXXX MD14
+
|F20 - 4XXXXX MD14
F17 - 7XXXXX MD14
+
|F19 - 5XXXXX MD14
F32 - 0XXXXX MD15
+
|F18 - 6XXXXX MD14
F31 - 1XXXXX MD15
+
|F17 - 7XXXXX MD14
F30 - 2XXXXX MD15
+
|F32 - 0XXXXX MD15
F29 - 3XXXXX MD15
+
|F31 - 1XXXXX MD15
F28 - 4XXXXX MD15
+
|F30 - 2XXXXX MD15
F27 - 5XXXXX MD15
+
|F29 - 3XXXXX MD15
F26 - 6XXXXX MD15
+
|F28 - 4XXXXX MD15
F25 - 7XXXXX MD15
+
|F27 - 5XXXXX MD15
F24 - 0XXXXX MD16
+
|F26 - 6XXXXX MD15
F23 - 1XXXXX MD16
+
|F25 - 7XXXXX MD15
F22 - 2XXXXX MD16
+
|F24 - 0XXXXX MD16
F21 - 3XXXXX MD16
+
|F23 - 1XXXXX MD16
F36 - 4XXXXX MD16
+
|F22 - 2XXXXX MD16
F35 - 5XXXXX MD16
+
|F21 - 3XXXXX MD16
F34 - 6XXXXX MD16
+
|F36 - 4XXXXX MD16
F33 - 7XXXXX MD16
+
|F35 - 5XXXXX MD16
G32 - 0XXXXX MD17
+
|F34 - 6XXXXX MD16
G31 - 1XXXXX MD17
+
|F33 - 7XXXXX MD16
G30 - 2XXXXX MD17
+
|G32 - 0XXXXX MD17
G29 - 3XXXXX MD17
+
|G31 - 1XXXXX MD17
G36 - 4XXXXX MD17
+
|G30 - 2XXXXX MD17
G35 - 5XXXXX MD17
+
|G29 - 3XXXXX MD17
G34 - 6XXXXX MD17
+
|G36 - 4XXXXX MD17
G33 - 7XXXXX MD17
+
|G35 - 5XXXXX MD17
G24 - 0XXXXX MD18
+
|G34 - 6XXXXX MD17
G23 - 1XXXXX MD18
+
|G33 - 7XXXXX MD17
G22 - 2XXXXX MD18
+
|G24 - 0XXXXX MD18
G21 - 3XXXXX MD18
+
|G23 - 1XXXXX MD18
G28 - 4XXXXX MD18
+
|G22 - 2XXXXX MD18
G27 - 5XXXXX MD18
+
|G21 - 3XXXXX MD18
G26 - 6XXXXX MD18
+
|G28 - 4XXXXX MD18
G25 - 7XXXXX MD18
+
|G27 - 5XXXXX MD18
H32 - 0XXXXX MD19
+
|G26 - 6XXXXX MD18
H31 - 1XXXXX MD19
+
|G25 - 7XXXXX MD18
H30 - 2XXXXX MD19
+
|H32 - 0XXXXX MD19
H29 - 3XXXXX MD19
+
|H31 - 1XXXXX MD19
G20 - 4XXXXX MD19
+
|H30 - 2XXXXX MD19
G19 - 5XXXXX MD19
+
|H29 - 3XXXXX MD19
G18 - 6XXXXX MD19
+
|G20 - 4XXXXX MD19
G17 - 7XXXXX MD19
+
|G19 - 5XXXXX MD19
H24 - 0XXXXX MD20
+
|G18 - 6XXXXX MD19
H23 - 1XXXXX MD20
+
|G17 - 7XXXXX MD19
H22 - 2XXXXX MD20
+
|H24 - 0XXXXX MD20
H21 - 3XXXXX MD20
+
|H23 - 1XXXXX MD20
K37 - 4XXXXX MD20
+
|H22 - 2XXXXX MD20
J37 - 5XXXXX MD20
+
|H21 - 3XXXXX MD20
H37 - 6XXXXX MD20
+
|K37 - 4XXXXX MD20
G37 - 7XXXXX MD20
+
|J37 - 5XXXXX MD20
I32 - 0XXXXX MD21
+
|H37 - 6XXXXX MD20
I31 - 1XXXXX MD21
+
|G37 - 7XXXXX MD20
I30 - 2XXXXX MD21
+
|I32 - 0XXXXX MD21
I29 - 3XXXXX MD21
+
|I31 - 1XXXXX MD21
H36 - 4XXXXX MD21
+
|I30 - 2XXXXX MD21
H35 - 5XXXXX MD21
+
|I29 - 3XXXXX MD21
H34 - 6XXXXX MD21
+
|H36 - 4XXXXX MD21
H33 - 7XXXXX MD21
+
|H35 - 5XXXXX MD21
I24 - 0XXXXX MD22
+
|H34 - 6XXXXX MD21
I23 - 1XXXXX MD22
+
|H33 - 7XXXXX MD21
I22 - 2XXXXX MD22
+
|I24 - 0XXXXX MD22
I21 - 3XXXXX MD22
+
|I23 - 1XXXXX MD22
H28 - 4XXXXX MD22
+
|I22 - 2XXXXX MD22
H27 - 5XXXXX MD22
+
|I21 - 3XXXXX MD22
H26 - 6XXXXX MD22
+
|H28 - 4XXXXX MD22
H25 - 7XXXXX MD22
+
|H27 - 5XXXXX MD22
J32 - 0XXXXX MD23
+
|H26 - 6XXXXX MD22
J31 - 1XXXXX MD23
+
|H25 - 7XXXXX MD22
J30 - 2XXXXX MD23
+
|J32 - 0XXXXX MD23
J29 - 3XXXXX MD23
+
|J31 - 1XXXXX MD23
I36 - 4XXXXX MD23
+
|J30 - 2XXXXX MD23
I35 - 5XXXXX MD23
+
|J29 - 3XXXXX MD23
I34 - 6XXXXX MD23
+
|I36 - 4XXXXX MD23
I33 - 7XXXXX MD23
+
|I35 - 5XXXXX MD23
J24 - 0XXXXX MD24
+
|I34 - 6XXXXX MD23
J23 - 1XXXXX MD24
+
|I33 - 7XXXXX MD23
J22 - 2XXXXX MD24
+
|J24 - 0XXXXX MD24
J21 - 3XXXXX MD24
+
|J23 - 1XXXXX MD24
I28 - 4XXXXX MD24
+
|J22 - 2XXXXX MD24
I27 - 5XXXXX MD24
+
|J21 - 3XXXXX MD24
I26 - 6XXXXX MD24
+
|I28 - 4XXXXX MD24
I25 - 7XXXXX MD24
+
|I27 - 5XXXXX MD24
K32 - 0XXXXX MD25
+
|I26 - 6XXXXX MD24
K31 - 1XXXXX MD25
+
|I25 - 7XXXXX MD24
K30 - 2XXXXX MD25
+
|K32 - 0XXXXX MD25
K29 - 3XXXXX MD25
+
|K31 - 1XXXXX MD25
J36 - 4XXXXX MD25
+
|K30 - 2XXXXX MD25
J35 - 5XXXXX MD25
+
|K29 - 3XXXXX MD25
J34 - 6XXXXX MD25
+
|J36 - 4XXXXX MD25
J33 - 7XXXXX MD25
+
|J35 - 5XXXXX MD25
K24 - 0XXXXX MD26
+
|J34 - 6XXXXX MD25
K23 - 1XXXXX MD26
+
|J33 - 7XXXXX MD25
K22 - 2XXXXX MD26
+
|K24 - 0XXXXX MD26
K21 - 3XXXXX MD26
+
|K23 - 1XXXXX MD26
J28 - 4XXXXX MD26
+
|K22 - 2XXXXX MD26
J27 - 5XXXXX MD26
+
|K21 - 3XXXXX MD26
J26 - 6XXXXX MD26
+
|J28 - 4XXXXX MD26
J25 - 7XXXXX MD26
+
|J27 - 5XXXXX MD26
K20 - 0XXXXX MD27
+
|J26 - 6XXXXX MD26
J20 - 1XXXXX MD27
+
|J25 - 7XXXXX MD26
I20 - 2XXXXX MD27
+
|K20 - 0XXXXX MD27
H20 - 3XXXXX MD27
+
|J20 - 1XXXXX MD27
K36 - 4XXXXX MD27
+
|I20 - 2XXXXX MD27
K35 - 5XXXXX MD27
+
|H20 - 3XXXXX MD27
K34 - 6XXXXX MD27
+
|K36 - 4XXXXX MD27
K33 - 7XXXXX MD27
+
|K35 - 5XXXXX MD27
F12 - 0XXXXX MD28
+
|K34 - 6XXXXX MD27
F11 - 1XXXXX MD28
+
|K33 - 7XXXXX MD27
F10 - 2XXXXX MD28
+
|F12 - 0XXXXX MD28
F09 - 3XXXXX MD28
+
|F11 - 1XXXXX MD28
K28 - 4XXXXX MD28
+
|F10 - 2XXXXX MD28
K26 - 6XXXXX MD28
+
|F09 - 3XXXXX MD28
K27 - 5XXXXX MD28
+
|K28 - 4XXXXX MD28
K25 - 7XXXXX MD28
+
|K26 - 6XXXXX MD28
G12 - 0XXXXX MD29
+
|K27 - 5XXXXX MD28
G11 - 1XXXXX MD29
+
|K25 - 7XXXXX MD28
G10 - 2XXXXX MD29
+
|G12 - 0XXXXX MD29
G09 - 3XXXXX MD29
+
|G11 - 1XXXXX MD29
G16 - 4XXXXX MD29
+
|G10 - 2XXXXX MD29
G15 - 5XXXXX MD29
+
|G09 - 3XXXXX MD29
G14 - 6XXXXX MD29
+
|G16 - 4XXXXX MD29
G13 - 7XXXXX MD29
+
|G15 - 5XXXXX MD29
G04 - 0XXXXX MD30
+
|G14 - 6XXXXX MD29
G03 - 1XXXXX MD30
+
|G13 - 7XXXXX MD29
G02 - 2XXXXX MD30
+
|G04 - 0XXXXX MD30
G01 - 3XXXXX MD30
+
|G03 - 1XXXXX MD30
G08 - 4XXXXX MD30
+
|G02 - 2XXXXX MD30
G07 - 5XXXXX MD30
+
|G01 - 3XXXXX MD30
G06 - 6XXXXX MD30
+
|G08 - 4XXXXX MD30
G05 - 7XXXXX MD30
+
|G07 - 5XXXXX MD30
H04 - 0XXXXX MD31
+
|G06 - 6XXXXX MD30
H03 - 1XXXXX MD31
+
|G05 - 7XXXXX MD30
H02 - 2XXXXX MD31
+
|H04 - 0XXXXX MD31
H01 - 3XXXXX MD31
+
|H03 - 1XXXXX MD31
H08 - 4XXXXX MD31
+
|H02 - 2XXXXX MD31
H07 - 5XXXXX MD31
+
|H01 - 3XXXXX MD31
H06 - 6XXXXX MD31
+
|H08 - 4XXXXX MD31
H05 - 7XXXXX MD31
+
|H07 - 5XXXXX MD31
H12 - 0XXXXX MD32
+
|H06 - 6XXXXX MD31
H11 - 1XXXXX MD32
+
|H05 - 7XXXXX MD31
H10 - 2XXXXX MD32
+
|H12 - 0XXXXX MD32
H09 - 3XXXXX MD32
+
|H11 - 1XXXXX MD32
H16 - 4XXXXX MD32
+
|H10 - 2XXXXX MD32
H15 - 5XXXXX MD32
+
|H09 - 3XXXXX MD32
H14 - 6XXXXX MD32
+
|H16 - 4XXXXX MD32
H13 - 7XXXXX MD32
+
|H15 - 5XXXXX MD32
I04 - 0XXXXX MD33
+
|H14 - 6XXXXX MD32
I03 - 1XXXXX MD33
+
|H13 - 7XXXXX MD32
I02 - 2XXXXX MD33
+
|I04 - 0XXXXX MD33
I01 - 3XXXXX MD33
+
|I03 - 1XXXXX MD33
I08 - 4XXXXX MD33
+
|I02 - 2XXXXX MD33
I07 - 5XXXXX MD33
+
|I01 - 3XXXXX MD33
I06 - 6XXXXX MD33
+
|I08 - 4XXXXX MD33
I05 - 7XXXXX MD33
+
|I07 - 5XXXXX MD33
I12 - 0XXXXX MD34
+
|I06 - 6XXXXX MD33
I11 - 1XXXXX MD34
+
|I05 - 7XXXXX MD33
I10 - 2XXXXX MD34
+
|I12 - 0XXXXX MD34
I09 - 3XXXXX MD34
+
|I11 - 1XXXXX MD34
I16 - 4XXXXX MD34
+
|I10 - 2XXXXX MD34
I15 - 5XXXXX MD34
+
|I09 - 3XXXXX MD34
I14 - 6XXXXX MD34
+
|I16 - 4XXXXX MD34
I13 - 7XXXXX MD34
+
|I15 - 5XXXXX MD34
J04 - 0XXXXX MD35
+
|I14 - 6XXXXX MD34
J03 - 1XXXXX MD35
+
|I13 - 7XXXXX MD34
J02 - 2XXXXX MD35
+
|J04 - 0XXXXX MD35
J01 - 3XXXXX MD35
+
|J03 - 1XXXXX MD35
J08 - 4XXXXX MD35
+
|J02 - 2XXXXX MD35
J07 - 5XXXXX MD35
+
|J01 - 3XXXXX MD35
J06 - 6XXXXX MD35
+
|J08 - 4XXXXX MD35
J05 - 7XXXXX MD35
+
|J07 - 5XXXXX MD35
J12 - 0XXXXX MD36
+
|J06 - 6XXXXX MD35
J11 - 1XXXXX MD36
+
|J05 - 7XXXXX MD35
J10 - 2XXXXX MD36
+
|J12 - 0XXXXX MD36
J09 - 3XXXXX MD36
+
|J11 - 1XXXXX MD36
J16 - 4XXXXX MD36
+
|J10 - 2XXXXX MD36
J15 - 5XXXXX MD36
+
|J09 - 3XXXXX MD36
J14 - 6XXXXX MD36
+
|J16 - 4XXXXX MD36
J13 - 7XXXXX MD36
+
|J15 - 5XXXXX MD36
K04 - 0XXXXX MD37
+
|J14 - 6XXXXX MD36
K03 - 1XXXXX MD37
+
|J13 - 7XXXXX MD36
K02 - 2XXXXX MD37
+
|K04 - 0XXXXX MD37
K01 - 3XXXXX MD37
+
|K03 - 1XXXXX MD37
K08 - 4XXXXX MD37
+
|K02 - 2XXXXX MD37
K07 - 5XXXXX MD37
+
|K01 - 3XXXXX MD37
K06 - 6XXXXX MD37
+
|K08 - 4XXXXX MD37
K05 - 7XXXXX MD37
+
|K07 - 5XXXXX MD37
K12 - 0XXXXX MD38
+
|K06 - 6XXXXX MD37
K11 - 1XXXXX MD38
+
|K05 - 7XXXXX MD37
K10 - 2XXXXX MD38
+
|K12 - 0XXXXX MD38
K09 - 3XXXXX MD38
+
|K11 - 1XXXXX MD38
K16 - 4XXXXX MD38
+
|K10 - 2XXXXX MD38
K15 - 5XXXXX MD38
+
|K09 - 3XXXXX MD38
K14 - 6XXXXX MD38
+
|K16 - 4XXXXX MD38
K13 - 7XXXXX MD38
+
|K15 - 5XXXXX MD38
 +
|K14 - 6XXXXX MD38
 +
|K13 - 7XXXXX MD38
 +
|}

Revision as of 05:15, 24 November 2019

This page contains notes on troubleshooting, repair, and theory of operation of the DEC KA650/MS650 memory subsystem.

Overview

The MS650-AA and MS650-BA memory module are intended to be used with the DEC KA650 VAX CPU, as the name might suggest. These quad width cards contain 8MB and 16MB of RAM for the VAX, respectively, complete with ECC.

Theory of Operation

Memory Controller General Architecture and Organization

Memory Control Signals Provided by the CMCTL

The CMCTL IC is the DRAM controller for the KA650 CPU. It has 10 address line outputs, 39 memory data I/O (MD), 4 CAS outputs, 4 RAS outputs, a WE pin, and an SE pin. Also available to the RAM card are the inverse of the 20th and 21st address lines (XA20 & XA21), which are used as bank selection when using 256kxX DRAMs. The data lines are provided to the RAM cards through a 50 conductor ribbon cable, while the rest of the control lines are provided through the CD interconnect on the backplane.

The 10 address lines carry the row address on the rising edge of a RAS line, followed by the column address on the rising edge of a CAS line.

The 39 data I/O carry the 32 data and 7 ECC bits for the RAM.

The 4 CAS (Column Address Strobe) lines allow strobing the column address on up to 4 separate memory modules.

The 4 RAS (Row Address Strobe) lines allow selection of up to 4 banks on a single memory module.

The WE (Write Enable) pin indicates that the CMCTL is writing to memory, rather than reading.

The SE (Strobe Enable?) pin seems to indicate that the CMCTL is refreshing memory. This is necessary for the 8MB card to correctly strobe the RAS lines of each rank during a refresh cycle, due to the extra RAS gating circuitry necessary on cards with 256kxX DRAMs.

The XA20 and XA21 lines are the inverse of the latched address lines from the CDAL bus.

Note that many of the above control lines are inverse logic from what is normally used to drive DRAMs; in particular, CAS, RAS, and WE lines are inverted from the normal JEDEC DRAM convention of active low /RAS, /CAS, and /WE.

Memory Ranks & Banks

Due to the 10 bit address bus using conventional multiplexed row and column DRAM addressing, an effective 20 bit address is formed. This allows the CMCTL to address up to 1MWord per rank.

By strobing different pairings of RAS and CAS (RAS0+CAS0 is one rank, while RAS0+CAS1 is another rank, while RAS1+CAS0 is yet another rank), the CMCTL supports up to 16 ranks of RAM, each 1Mx39. Each rank is thus 4MB of memory once ECC overhead is accounted for. This puts a 64MB cap on the maximum amount of memory the CMCTL can address (16 ranks of 4MB).

When 256kxX DRAMs are used in place of 1MxX DRAMs, each 1Mx39 rank is further divided into 4 banks of 256kx39. Each bank is selected by XA20 and XA21, which are provided to the RAM cards via the CD interconnect. These address bits appear to only be valid on the rising edge of RAS. Before CAS has strobed, the bits have generally already changed since these are derived from the CDAL bus of the VAX CPU. These bits are used to gate the /RAS lines to the DRAMs ensuring that only the selected bank is addressed. The /CAS line for the card is not affected.

The MS650-AA card contains 312 256kx1 ZIP DRAMs, organized into 8 banks of 256kx39. As previously mentioned, one memory rank as addressed by the CMCTL memory controller consists of 4 banks, making up a total of 1MWord of memory per rank. Each DRAM on the card corresponds to one bit of the 39 bit word within a 1MB address region of the VAX.

Addressing

The CMCTL appears to convert 32 bit VAX addresses into DRAM addressing as follows:

A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A09 A08 A07 A06 A05 A04 A03 A02
R09 R08 R07 R06 R05 R04 R03 R02 R01 R00
C09 C08 C07 C06 C05 C04 C03 C02 C01 C00

Axx are VAX address lines Rxx are DRAM row address bits Cxx are DRAM column address bits

This addressing scheme is used to ensure that 256kxX DRAMs (which use only 9 bit row and column addresses) are still supported for use with the CMCTL.

It is, of course, still up to the CMCTL to determine which ranks are selected by the upper bits of a given physical address. This is determined by the MEMCSR0-15 registers, which seem to specify whether or not a bank is present, as well as what base address it resides at. It may perform other functions, but it does not seem to be documented in available documentation.

CAS and RAS Signals

Each 16MB or 8MB memory card for the KA650 uses one CAS line in its entirety. This is why a maximum of 4 cards may be used in a KA650 system. Each RAM card uses the first CAS line, and passes the remaining lines on to the next card, shifted down one bit. So for example, the first card gets CAS0 CAS1 CAS2 CAS3, in that order. It uses CAS0 and passes CAS1 CAS2 and CAS3 on to the next card, in that order. The next card uses CAS1 and passes on CAS2 and CAS3. This repeats until 4 cards have used up all of the available CAS lines.

The CAS line is not gated in any way on the MS650-AA. The CAS line is simply buffered, inverted to match the polarity of the DRAMs, and distributed to all DRAMs on the card (likely with some hierarchical buffering methodology).

Refresh

DRAMs are built using one tiny MOS capacitor for each bit. These capacitors leak slightly and need to be periodically refreshed. DRAM rows are refreshed by simply addressing a row. Any row access refreshes that row, no column needs to be strobed for a refresh.

As such, during refresh cycles, the CMCTL places a row address to be refreshed on the address bus, asserts SE, and asserts all RAS lines for several clock cycles. The purpose of the SE signal is so that RAM cards with 256kxX DRAMs do not gate any of the /RAS lines going to the DRAMs, or else only whatever DRAM bank is (randomly) addressed by XA20 and XA21 would be refreshed.

ECC

The ECC supported by the CMCTL, according to the KA650 technical manual, has the ability to detect and correct single data bit errors, detect single ECC bit errors, and detect double-bit data errors.

ECC is generally based on producing parity bits of various collections of data bits. Since parity is based around the simple XOR, it is a linear operation in a manner of speaking. Luckily this means we can determine the ECC equations based on a number of sample data patterns and the respective ECC bits, such as the ECC produced for 0 data, and data with only one bit in the word set. By comparing the ECC for each test pattern to that of 0, we can determine which ECC bits each bit in the data word affects.

bit data ECC
MSB LSB
- 0000 0000 0000 0000 0000 0000 0000 0000 0111100
0 0000 0000 0000 0000 0000 0000 0000 0001 1100100
1 0000 0000 0000 0000 0000 0000 0000 0010 0100000
2 0000 0000 0000 0000 0000 0000 0000 0100 0100110
3 0000 0000 0000 0000 0000 0000 0000 1000 1100010
4 0000 0000 0000 0000 0000 0000 0001 0000 0100011
5 0000 0000 0000 0000 0000 0000 0010 0000 1100111
6 0000 0000 0000 0000 0000 0000 0100 0000 1100001
7 0000 0000 0000 0000 0000 0000 1000 0000 0100101
8 0000 0000 0000 0000 0000 0001 0000 0000 1010100
9 0000 0000 0000 0000 0000 0010 0000 0000 0010000
10 0000 0000 0000 0000 0000 0100 0000 0000 0010110
11 0000 0000 0000 0000 0000 1000 0000 0000 1010010
12 0000 0000 0000 0000 0001 0000 0000 0000 0010011
13 0000 0000 0000 0000 0010 0000 0000 0000 1010111
14 0000 0000 0000 0000 0100 0000 0000 0000 1010001
15 0000 0000 0000 0000 1000 0000 0000 0000 0010101
16 0000 0000 0000 0001 0000 0000 0000 0000 1001100
17 0000 0000 0000 0010 0000 0000 0000 0000 0001000
18 0000 0000 0000 0100 0000 0000 0000 0000 0001110
19 0000 0000 0000 1000 0000 0000 0000 0000 1001010
20 0000 0000 0001 0000 0000 0000 0000 0000 0001011
21 0000 0000 0010 0000 0000 0000 0000 0000 1001111
22 0000 0000 0100 0000 0000 0000 0000 0000 1001001
23 0000 0000 1000 0000 0000 0000 0000 0000 0001101
24 0000 0001 0000 0000 0000 0000 0000 0000 0000100
25 0000 0010 0000 0000 0000 0000 0000 0000 1000000
26 0000 0100 0000 0000 0000 0000 0000 0000 1000110
27 0000 1000 0000 0000 0000 0000 0000 0000 0000010
28 0001 0000 0000 0000 0000 0000 0000 0000 1000011
29 0010 0000 0000 0000 0000 0000 0000 0000 0000111
30 0100 0000 0000 0000 0000 0000 0000 0000 0000001
31 1000 0000 0000 0000 0000 0000 0000 0000 1000101


The results of this are depicted below. The basic result is that toggling one of the bits that belongs to the ECC bit group will result in that ECC bit toggling as well.

ECC bit MSB LSB
MD32 X X X X X X X X X X X X X X X X
MD33 X X X X X X X X X X X X X X X X
MD34 X X X X X X X X X X X X X X X X
MD35 X X X X X X X X X X X X X X X X X X X X X X X X
MD36 X X X X X X X X X X X X X X X X X X X X X X X X
MD37 X X X X X X X X X X X X X X X X X X X X X X X X
MD38 X X X X X X X X X X X X X X X X

An interesting and potentially useful point to note is that flipping bit 28 happens to flip all of the ECC bits together. Another interesting point is that inverting the entire data word produces the same ECC.

From this information, we can derive some data patterns that produce useful ECC combinations, such as ECC of all zeroes, all ones, only one bit set, and only one bit clear. Looking at the table above, we got lucky and examples of many of these combinations were found by chance. In particular, we happened upon data combinations that produced every possibility of 1 ECC bit set. These, combined with the fact that we can toggle bit 28 to get the inverse ECC bits, gives us a set of data patterns which produce ECC with only one bit clear. From here, we only need to derive a combination which produces all-zero ECC, and from that, derive all-one ECC.

Starting with the ECC for bit 31 set, we can toggle single bits at a time until we find a combination that produces the ECC we want.

31  1000 0000 0000 0000 0000 0000 0000 0000 1000101
    1000 0000 0000 0000 0000 0000 0000 0001 0011101
    1000 0000 0000 0000 0000 0010 0000 0001 0110001
    1000 0000 1000 0000 0000 0010 0000 0001 0000000 <--
    1001 0000 1000 0000 0000 0010 0000 0001 1111111 <--
 

The summary of these useful ECC combinations is tabulated below (data in hex, ECC in binary)

useful ECC combinations:

ECC (binary) data (hex)
0000000 80800201
0000001 40000000
0000010 08000000
0000100 01000000
0001000 00020000
0010000 00000200
0100000 00000002
1000000 02000000
1111111 90800201
1111110 50000000
1111101 18000000
1111011 11000000
1110111 10020000
1101111 10000200
1011111 10000002
0111111 12000000

KA650 VAX Firmware Memory Tests

Many of the tests built in to the firmware of the VAX can be quite thorough, if used properly. The tests can be accessed by the TEST command in the monitor, abbreviated to 't'.

The tests report diagnostic information upon failure, encoded simply as a number of values in registers and memory locations on the stack. With the proper documentation, these values could be decoded to determine the problem. Lacking that documentation, I was able to reverse engineer enough of one test that was failing to understand it's output.

TEST 48: MEM_Addr_shrts

This test is normally used to check for shorted address lines. It will fill the memory with a pattern first, then it will check each word in order to see if it is still the same pattern. After checking a word, it will check the CMCTL status register to ensure there were no detected errors. Then it will replace the word with another pattern (usually mostly an inverse of the first pattern).

If any address line is shorted, when the test writes the second pattern, it will affect another location in memory. When that location is encountered, it will read as the wrong data thus showing the issue. However, the test is also capable of detecting stuck bits the way it is designed, and this test happened to find all DRAM errors in my case.

The output when the test encounters an error looks like the following:

>>>t 48


?48 2 08 FF 00 0002

P1=00000000  P2=04000000  P3=00000004  P4=00031000  P5=AAAAAAAA
P6=55555555  P7=00000043  P8=200C5875  P9=00000000 P10=2005311F
r0=45555555  r1=000C5860  r2=45555555  r3=00000004  r4=0000006B
r5=AAAAAAAA  r6=20080140  r7=20080144  r8=00000000 ERF=80000000

Normal operation not possible.

>>>
 

I figured out the meaning of some of these registers for this test. First of all, P10 indicates an address where presumably DEC personnel would check a source listing to find out the exact meaning of the rest of the values shown. The meanings of the registers I have found are only valid for this routine, located near 2005311F.

register description
r0 contents of memory at address being tested
r1 address being tested
r2 expected pattern from memory being tested
r5 pattern to replace location with
r6 address of CMCTL MEMCSR16 (a diagnostic register)
P8 contents of MEMCSR16

MEMCSR16 Register

The MEMCSR16 register gives us information on what kind of memory failure occurred. The bit meanings are as follows, according to the KA650 technical manual:

bits description
<31> set if uncorrectable error occurred
<30> set if multiple uncorrectable errors occurred
<29> set if correctable error occurred
<28:9> page address where error occurred (pages are 512 bytes)
<8> set if error ocurred during DMA
<7> set if CDAL bus parity error occurred
<6:0> error syndrome: a unique combination is produced here for each possible single bit error

writing 1s to bits 31, 30, 29, 8, or 7 of MEMCSR16 resets those bits. bits 28:9 and 6:0 are read only.

The MEMCSR registers can be read with test 9c.

Error Syndrome Field

The error syndrome is particularly useful for troubleshooting memory errors as it can tell us exactly which bit had the error. A list of the syndromes and the corresponding bit error is given below.

syndrome bit position or error description
0000000 no error
0000001 32
0000010 33
0000100 34
0000111 result of incorrect check bits written on CDAL parity error
0001000 35
0010000 36
0011001 7
0011010 2
0011100 1
0011111 4
0100000 37
0101001 15
0101010 10
0101100 9
0101111 12
0110001 23
0110010 18
0110100 17
0110111 20
0111000 24
0111011 29
0111101 30
0111110 27
1000000 38
1011000 0
1011011 5
1011101 6
1011110 3
1101000 8
1101011 13
1101101 14
1101110 11
1110000 16
1110011 21
1110101 22
1110110 19
1111001 31
1111010 26
1111100 25
1111111 28
other multibit error

TROUBLESHOOTING

We now have all of the information necessary to narrow down which bits in which address regions are bad. However, that doesn't do any good for repair unless we also know which physical DRAMs that bit and region correspond to.

MS650-AA

Shown below is a diagram of the MS650-AA RAM card, broken up into 11 columns and 37 rows. Each spot in this grid contains up to 1 DRAM, but some locations contain other circuitry instead.


    |  A   |  B   |  C   |  D   |  E   |  F   |  G   |  H   |  I   |  J   |  K   |
   --------------------------------------------------------------------------------
01 |           ooooooooooooooooooooooooo      |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 01
   | --------- --------- --------- ---------  |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
   | |BBBBBBB| |BBBBBBB| |BBBBBBB| |BBBBBBB|  |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
   | |BBBBBBB| |BBBBBBB| |BBBBBBB| |BBBBBBB|  |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
08 | --------- --------- --------- ---------  |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 08
   |-------------------------------------------DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
09 |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 09
   |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
16 |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 16
17 |DDDDDDD-----------------------------DDDDDDDDDDDDD-----------------------------| 17
18 |DDDDDDD|TTTTTTT TTTTTTTTT TTTTTTTT |DDDDDDDDDDDDD|TTTTTTTT TTTTTTTTT TTTTTTTT | 18
19 |DDDDDDD-----------------------------DDDDDDDDDDDDD-----------------------------| 19
20 |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 20
   |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
   |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
   |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
   |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
   |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
   |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
32 |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 32
33 |DDDDDDD-----------------------------DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 33
36 |DDDDDDD|       PPPPPPP TTTTT TTTTT |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 35
37 |-------- TTTTTTT         TTTTTTT   --------DDDDDDDDDDDDDD-------DDDDDDDDDDDDDD| 37
   |                                           --------------       --------------|   
   |                  ___-                 -                 ___-                 |
   |                  |  |                ||                 |  |                 |
   --------------------  ----------------------------------------------------------
    |  A   |  B   |  C   |  D   |  E   |  F   |  G   |  H   |  I   |  J   |  K   |

-----------------------------------------------
| D DRAMS                                     |
| T TTL IC                                    |
| B some kind of DEC custom fast data buffer? |
| P PAL16L8                                   |
| o data connector                            |
| | border                                    |
| - border                                    |
-----------------------------------------------

 

The MS650-AA RAM card uses two RAS lines. During normal initialization of the VAX, the rank connected to RAS0 will be first in memory, followed by the rank connected to RAS1. Presumably, the MS650-BA card would have 4 ranks.

RAS0 - first 4MB RAS1 - second 4MB

Based on the bit with the error, as well as the memory region where the error occurred, the specific DRAM with the failure can be found and replaced.

Below is a list of the DRAMs sorted by memory region and bit, showing the grid location of the DRAM IC.

By using the built in tests, along with MEMCSR16, and perhaps some manual DEPOSIT and EXAMINE testing, the bad DRAM should be possible to locate and then, using this table, the DRAM can be replaced.

DRAM Address data bit A12 0XXXXX MD00 A11 - 1XXXXX MD00 A10 - 2XXXXX MD00 A09 - 3XXXXX MD00 A16 - 4XXXXX MD00 A15 - 5XXXXX MD00 A14 - 6XXXXX MD00 A13 - 7XXXXX MD00 A24 - 0XXXXX MD01 A23 - 1XXXXX MD01 A22 - 2XXXXX MD01 A21 - 3XXXXX MD01 A20 - 4XXXXX MD01 A19 - 5XXXXX MD01 A18 - 6XXXXX MD01 A17 - 7XXXXX MD01 A32 - 0XXXXX MD02 A31 - 1XXXXX MD02 A30 - 2XXXXX MD02 A29 - 3XXXXX MD02 A28 - 4XXXXX MD02 A27 - 5XXXXX MD02 A26 - 6XXXXX MD02 A25 - 7XXXXX MD02 B12 - 0XXXXX MD03 B11 - 1XXXXX MD03 B10 - 2XXXXX MD03 B09 - 3XXXXX MD03 A36 - 4XXXXX MD03 A35 - 5XXXXX MD03 A34 - 6XXXXX MD03 A33 - 7XXXXX MD03 B24 - 0XXXXX MD04 B23 - 1XXXXX MD04 B22 - 2XXXXX MD04 B21 - 3XXXXX MD04 B16 - 4XXXXX MD04 B15 - 5XXXXX MD04 B14 - 6XXXXX MD04 B13 - 7XXXXX MD04 B32 - 0XXXXX MD05 B31 - 1XXXXX MD05 B30 - 2XXXXX MD05 B29 - 3XXXXX MD05 B28 - 4XXXXX MD05 B27 - 5XXXXX MD05 B26 - 6XXXXX MD05 B25 - 7XXXXX MD05 C12 - 0XXXXX MD06 C11 - 1XXXXX MD06 C10 - 2XXXXX MD06 C09 - 3XXXXX MD06 C16 - 4XXXXX MD06 C15 - 5XXXXX MD06 C14 - 6XXXXX MD06 C13 - 7XXXXX MD06 C24 - 0XXXXX MD07 C23 - 1XXXXX MD07 C22 - 2XXXXX MD07 C21 - 3XXXXX MD07 E20 - 4XXXXX MD07 D20 - 5XXXXX MD07 C20 - 6XXXXX MD07 B20 - 7XXXXX MD07 C32 - 0XXXXX MD08 C31 - 1XXXXX MD08 C30 - 2XXXXX MD08 C29 - 3XXXXX MD08 C28 - 4XXXXX MD08 C27 - 5XXXXX MD08 C26 - 6XXXXX MD08 C25 - 7XXXXX MD08 D32 - 0XXXXX MD09 D31 - 1XXXXX MD09 D30 - 2XXXXX MD09 D29 - 3XXXXX MD09 D28 - 4XXXXX MD09 D27 - 5XXXXX MD09 D26 - 6XXXXX MD09 D25 - 7XXXXX MD09 D24 - 0XXXXX MD10 D23 - 1XXXXX MD10 D22 - 2XXXXX MD10 D21 - 3XXXXX MD10 D16 - 4XXXXX MD10 D15 - 5XXXXX MD10 D14 - 6XXXXX MD10 D13 - 7XXXXX MD10 D12 - 0XXXXX MD11 D11 - 1XXXXX MD11 D10 - 2XXXXX MD11 D09 - 3XXXXX MD11 E16 - 4XXXXX MD11 E15 - 5XXXXX MD11 E14 - 6XXXXX MD11 E13 - 7XXXXX MD11 E12 - 0XXXXX MD12 E11 - 1XXXXX MD12 E10 - 2XXXXX MD12 E09 - 3XXXXX MD12 E28 - 4XXXXX MD12 E27 - 5XXXXX MD12 E26 - 6XXXXX MD12 E25 - 7XXXXX MD12 E24 - 0XXXXX MD13 E23 - 1XXXXX MD13 E22 - 2XXXXX MD13 E21 - 3XXXXX MD13 F16 - 4XXXXX MD13 F15 - 5XXXXX MD13 F14 - 6XXXXX MD13 F13 - 7XXXXX MD13 E32 - 0XXXXX MD14 E31 - 1XXXXX MD14 E30 - 2XXXXX MD14 E29 - 3XXXXX MD14 F20 - 4XXXXX MD14 F19 - 5XXXXX MD14 F18 - 6XXXXX MD14 F17 - 7XXXXX MD14 F32 - 0XXXXX MD15 F31 - 1XXXXX MD15 F30 - 2XXXXX MD15 F29 - 3XXXXX MD15 F28 - 4XXXXX MD15 F27 - 5XXXXX MD15 F26 - 6XXXXX MD15 F25 - 7XXXXX MD15 F24 - 0XXXXX MD16 F23 - 1XXXXX MD16 F22 - 2XXXXX MD16 F21 - 3XXXXX MD16 F36 - 4XXXXX MD16 F35 - 5XXXXX MD16 F34 - 6XXXXX MD16 F33 - 7XXXXX MD16 G32 - 0XXXXX MD17 G31 - 1XXXXX MD17 G30 - 2XXXXX MD17 G29 - 3XXXXX MD17 G36 - 4XXXXX MD17 G35 - 5XXXXX MD17 G34 - 6XXXXX MD17 G33 - 7XXXXX MD17 G24 - 0XXXXX MD18 G23 - 1XXXXX MD18 G22 - 2XXXXX MD18 G21 - 3XXXXX MD18 G28 - 4XXXXX MD18 G27 - 5XXXXX MD18 G26 - 6XXXXX MD18 G25 - 7XXXXX MD18 H32 - 0XXXXX MD19 H31 - 1XXXXX MD19 H30 - 2XXXXX MD19 H29 - 3XXXXX MD19 G20 - 4XXXXX MD19 G19 - 5XXXXX MD19 G18 - 6XXXXX MD19 G17 - 7XXXXX MD19 H24 - 0XXXXX MD20 H23 - 1XXXXX MD20 H22 - 2XXXXX MD20 H21 - 3XXXXX MD20 K37 - 4XXXXX MD20 J37 - 5XXXXX MD20 H37 - 6XXXXX MD20 G37 - 7XXXXX MD20 I32 - 0XXXXX MD21 I31 - 1XXXXX MD21 I30 - 2XXXXX MD21 I29 - 3XXXXX MD21 H36 - 4XXXXX MD21 H35 - 5XXXXX MD21 H34 - 6XXXXX MD21 H33 - 7XXXXX MD21 I24 - 0XXXXX MD22 I23 - 1XXXXX MD22 I22 - 2XXXXX MD22 I21 - 3XXXXX MD22 H28 - 4XXXXX MD22 H27 - 5XXXXX MD22 H26 - 6XXXXX MD22 H25 - 7XXXXX MD22 J32 - 0XXXXX MD23 J31 - 1XXXXX MD23 J30 - 2XXXXX MD23 J29 - 3XXXXX MD23 I36 - 4XXXXX MD23 I35 - 5XXXXX MD23 I34 - 6XXXXX MD23 I33 - 7XXXXX MD23 J24 - 0XXXXX MD24 J23 - 1XXXXX MD24 J22 - 2XXXXX MD24 J21 - 3XXXXX MD24 I28 - 4XXXXX MD24 I27 - 5XXXXX MD24 I26 - 6XXXXX MD24 I25 - 7XXXXX MD24 K32 - 0XXXXX MD25 K31 - 1XXXXX MD25 K30 - 2XXXXX MD25 K29 - 3XXXXX MD25 J36 - 4XXXXX MD25 J35 - 5XXXXX MD25 J34 - 6XXXXX MD25 J33 - 7XXXXX MD25 K24 - 0XXXXX MD26 K23 - 1XXXXX MD26 K22 - 2XXXXX MD26 K21 - 3XXXXX MD26 J28 - 4XXXXX MD26 J27 - 5XXXXX MD26 J26 - 6XXXXX MD26 J25 - 7XXXXX MD26 K20 - 0XXXXX MD27 J20 - 1XXXXX MD27 I20 - 2XXXXX MD27 H20 - 3XXXXX MD27 K36 - 4XXXXX MD27 K35 - 5XXXXX MD27 K34 - 6XXXXX MD27 K33 - 7XXXXX MD27 F12 - 0XXXXX MD28 F11 - 1XXXXX MD28 F10 - 2XXXXX MD28 F09 - 3XXXXX MD28 K28 - 4XXXXX MD28 K26 - 6XXXXX MD28 K27 - 5XXXXX MD28 K25 - 7XXXXX MD28 G12 - 0XXXXX MD29 G11 - 1XXXXX MD29 G10 - 2XXXXX MD29 G09 - 3XXXXX MD29 G16 - 4XXXXX MD29 G15 - 5XXXXX MD29 G14 - 6XXXXX MD29 G13 - 7XXXXX MD29 G04 - 0XXXXX MD30 G03 - 1XXXXX MD30 G02 - 2XXXXX MD30 G01 - 3XXXXX MD30 G08 - 4XXXXX MD30 G07 - 5XXXXX MD30 G06 - 6XXXXX MD30 G05 - 7XXXXX MD30 H04 - 0XXXXX MD31 H03 - 1XXXXX MD31 H02 - 2XXXXX MD31 H01 - 3XXXXX MD31 H08 - 4XXXXX MD31 H07 - 5XXXXX MD31 H06 - 6XXXXX MD31 H05 - 7XXXXX MD31 H12 - 0XXXXX MD32 H11 - 1XXXXX MD32 H10 - 2XXXXX MD32 H09 - 3XXXXX MD32 H16 - 4XXXXX MD32 H15 - 5XXXXX MD32 H14 - 6XXXXX MD32 H13 - 7XXXXX MD32 I04 - 0XXXXX MD33 I03 - 1XXXXX MD33 I02 - 2XXXXX MD33 I01 - 3XXXXX MD33 I08 - 4XXXXX MD33 I07 - 5XXXXX MD33 I06 - 6XXXXX MD33 I05 - 7XXXXX MD33 I12 - 0XXXXX MD34 I11 - 1XXXXX MD34 I10 - 2XXXXX MD34 I09 - 3XXXXX MD34 I16 - 4XXXXX MD34 I15 - 5XXXXX MD34 I14 - 6XXXXX MD34 I13 - 7XXXXX MD34 J04 - 0XXXXX MD35 J03 - 1XXXXX MD35 J02 - 2XXXXX MD35 J01 - 3XXXXX MD35 J08 - 4XXXXX MD35 J07 - 5XXXXX MD35 J06 - 6XXXXX MD35 J05 - 7XXXXX MD35 J12 - 0XXXXX MD36 J11 - 1XXXXX MD36 J10 - 2XXXXX MD36 J09 - 3XXXXX MD36 J16 - 4XXXXX MD36 J15 - 5XXXXX MD36 J14 - 6XXXXX MD36 J13 - 7XXXXX MD36 K04 - 0XXXXX MD37 K03 - 1XXXXX MD37 K02 - 2XXXXX MD37 K01 - 3XXXXX MD37 K08 - 4XXXXX MD37 K07 - 5XXXXX MD37 K06 - 6XXXXX MD37 K05 - 7XXXXX MD37 K12 - 0XXXXX MD38 K11 - 1XXXXX MD38 K10 - 2XXXXX MD38 K09 - 3XXXXX MD38 K16 - 4XXXXX MD38 K15 - 5XXXXX MD38 K14 - 6XXXXX MD38 K13 - 7XXXXX MD38