KA650 Main Memory System
DEC MS650-AA: NOTES ON TROUBLESHOOTING, REPAIR, AND THEORY OF OPERATION
OVERVIEW
The MS650-AA memory card is intended to be used with the DEC KA650 VAX CPU, as the name might suggest. The quad width card contains 8MB of memory for the VAX, complete with ECC.
THEORY OF OPERATION MEMORY CONTROLLER GENERAL ARCHITECTURE AND ORGANIZATION The CMCTL IC is the DRAM controller for the KA650 CPU. It has 10 address line outputs, 39 data I/O, 4 CAS lines, 4 RAS lines, a WE pin, and an SE pin. Also available to the RAM card are the inverse of the 20th and 21st address lines, which are used as rank selection when using 256kxX DRAMs. The data lines are provided to the RAM cards through a 50 conductor ribbon cable, while the rest of the control lines are provided through the CD interconnect on the backplane.
The 10 address lines carry the row address on the rising edge of a RAS line, followed by the column address on the rising edge of a CAS line.
The 39 data I/O carry the 32 data and 7 ECC bits for the RAM
The 4 CAS (Column Address Strobe) lines allow strobing the column address on up to 4 separate memory cards.
The 4 RAS (Row Address Strobe) lines allow selection of up to 4 banks on a single memory card.
The WE (Write Enable) pin indicates that the CMCTL is writing to memory, rather than reading.
The SE (Strobe Enable?) pin seems to indicate that the CMCTL is refreshing memory.
The XA20 and XA21 lines are the inverse of the latched address lines from the CDAL bus.
Note that many of the above control lines are inverse logic from what is normally used to drive DRAMs; in particular, CAS, RAS, and WE lines are inverted from the normal JEDEC DRAM convention of active low /RAS, /CAS, and /WE.
Due to the 10 bit address bus using conventional multiplexed row and column DRAM
addressing, an effective 20 bit address is formed. This allows the CMCTL to
address up to 1MWord per bank.
By strobing different pairings of RAS and CAS (RAS0+CAS0 is one bank, while RAS0+CAS1 is another bank, while RAS1+CAS0 is yet another bank), the CMCTL supports up to 16 banks of RAM, each 1Mx39. Each bank is thus 4MB of memory once ECC overhead is accounted for. This puts a 64MB cap on the maximum amount of memory the CMCTL can address (16 banks of 4MB).
When 256kxX DRAMs are used in place of 1MxX DRAMs, each 1Mx39 bank is divided into 4 ranks of 256kx39. Each rank is selected by XA20 and XA21, which are provided to the RAM cards via the CD interconnect. These address bits appear to only be valid on the risng edge of RAS. Before CAS has strobed, the bits have generally already changed since these are derived from the CDAL bus of the VAX CPU. These bits are used to gate the /RAS lines to the DRAMs ensuring that only the selected rank is addressed. The /CAS line for the card is not affected.
The MS650-AA card contains 312 256kx1 ZIP DRAMs, organized into 8 ranks of 256kx39. As previously mentioned, one memory bank as addressed by the CMCTL memory controller consists of 4 ranks, making up a total of 1MWord of memory per bank. Each DRAM on the card corresponds to one bit of the 39 bit word within a 1MB address region of the VAX.
ADDRESSING
The CMCTL appears to convert 32 bit VAX addresses into DRAM addressing as follows:
A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A09 A08 A07 A06 A05 A04 A03 A02 R09 R08 R07 R06 R05 R04 R03 R02 R01 R00
C09 C08 C07 C06 C05 C04 C03 C02 C01 C00
Axx are VAX address lines Rxx are DRAM row address bits Cxx ard DRAM column address bits
This addressing scheme is used to ensure that 256kxX DRAMs (which use only 9 bit row and column addresses) are still supported for use with the CMCTL.
It is, of course, still up to the CMCTL to determine which banks are selected by the upper bits of a given physical address. This is determined by the MEMCSR0-15 registers, which seem to specify whether or not a bank is present, as well as what base address it resides at. It may perform other functions, but it does not seem to be documented in available documentation.
CAS AND RAS LINES
Each 16MB or 8MB memory card for the KA650 uses one CAS line in its entirety. This is why a maximum of 4 cards may be used in a KA650 system. Each RAM card uses the first CAS line, and passes the remaining lines on to the next card, shifted down one bit. So for example, the first card gets CAS0 CAS1 CAS2 CAS3, in that order. It uses CAS0 and passes CAS1 CAS2 and CAS3 on to the next card, in that order. The next card uses CAS1 and passes on CAS2 and CAS3. This repeats until 4 cards have used up all of the available CAS lines.
The CAS line is not gated in any way on the MS650-AA. The CAS line is simply buffered, inverted to match the polarity of the DRAMs, and distributed to all DRAMs on the card (likely with some hierarchical buffering methodology)
REFRESH
DRAMs are built using one tiny MOS capacitor for each bit. These capacitors leak slightly and need to be periodically refreshed. DRAM rows are refreshed by simply addressing a row. Any row access refreshes that row, no column needs to be strobed for a refresh.
As such, during refresh cycles, the CMCTL places a row address to be refreshed on the address bus, asserts SE, and asserts all RAS lines for several clock cycles. The purpose of the SE signal is so that RAM cards with 256kxX DRAMs do not gate any of the /RAS lines going to the DRAMs, or else only whatever DRAM rank is (randomly) addressed by XA20 and XA21 would be refreshed.
ECC
The ECC supported by the CMCTL, according to the KA650 technical manual, has the ability to detect and correct single data bit errors, detect single ECC bit errors, and detect double-bit data errors.
ECC is generally based on producing parity bits of various collections of data bits. Since parity is based around the simple XOR, it is a linear operation in a manner of speaking. Luckily this means we can determine the ECC equations based on a number of sample data patterns and the respective ECC bits, such as the ECC produce for 0 data, and data with only one bit in the word set. By comparing the ECC for each test pattern to that of 0, we can determine which ECC bits each bit in the data word affects.
data LSB ecc LSB 0000 0000 0000 0000 0000 0000 0000 0000 0111100 00 0000 0000 0000 0000 0000 0000 0000 0001 1100100 01 0000 0000 0000 0000 0000 0000 0000 0010 0100000 <-- 02 0000 0000 0000 0000 0000 0000 0000 0100 0100110 03 0000 0000 0000 0000 0000 0000 0000 1000 1100010 04 0000 0000 0000 0000 0000 0000 0001 0000 0100011 05 0000 0000 0000 0000 0000 0000 0010 0000 1100111 06 0000 0000 0000 0000 0000 0000 0100 0000 1100001 07 0000 0000 0000 0000 0000 0000 1000 0000 0100101 08 0000 0000 0000 0000 0000 0001 0000 0000 1010100 09 0000 0000 0000 0000 0000 0010 0000 0000 0010000 <-- 10 0000 0000 0000 0000 0000 0100 0000 0000 0010110 11 0000 0000 0000 0000 0000 1000 0000 0000 1010010 12 0000 0000 0000 0000 0001 0000 0000 0000 0010011 13 0000 0000 0000 0000 0010 0000 0000 0000 1010111 14 0000 0000 0000 0000 0100 0000 0000 0000 1010001 15 0000 0000 0000 0000 1000 0000 0000 0000 0010101 16 0000 0000 0000 0001 0000 0000 0000 0000 1001100 17 0000 0000 0000 0010 0000 0000 0000 0000 0001000 <-- 18 0000 0000 0000 0100 0000 0000 0000 0000 0001110 19 0000 0000 0000 1000 0000 0000 0000 0000 1001010 20 0000 0000 0001 0000 0000 0000 0000 0000 0001011 21 0000 0000 0010 0000 0000 0000 0000 0000 1001111 22 0000 0000 0100 0000 0000 0000 0000 0000 1001001 23 0000 0000 1000 0000 0000 0000 0000 0000 0001101 24 0000 0001 0000 0000 0000 0000 0000 0000 0000100 <-- 25 0000 0010 0000 0000 0000 0000 0000 0000 1000000 <-- 26 0000 0100 0000 0000 0000 0000 0000 0000 1000110 27 0000 1000 0000 0000 0000 0000 0000 0000 0000010 <-- 28 0001 0000 0000 0000 0000 0000 0000 0000 1000011 29 0010 0000 0000 0000 0000 0000 0000 0000 0000111 30 0100 0000 0000 0000 0000 0000 0000 0000 0000001 <-- 31 1000 0000 0000 0000 0000 0000 0000 0000 1000101
The results of this are depicted below. The basic result is that toggling one of the bits that belongs to the ECC bit group will result in that ECC bit toggling as well.
MD32 - 04,05,06,07, 12,13,14.15, 20,21,22,23, 28,29,30,31
MD33 - 02,03,04,05, 10,11,12,13, 18,19,20,21, 26,27,28,29,
MD34 - 01, 03,04, 06, 09, 11,12, 14, 17, 19,20, 22, 25, 27,28, 30,
MD35 - 00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15, 24,25,26,27,28,29,30,31
MD36 - 00,01,02,03,04,05,06,07, 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
MD37 - 08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
MD39 - 00, 03, 05,06, 08, 11, 13,14, 16, 19, 21,22, 25,26, 28, 31
^ | | note flipping bit 28 flips all ECC bits
An interesting and potentially useful point to note is that flipping bit 28 happens to flip all of the ECC bits together. Another interesting point is that inverting the entire data word produces the same ECC.
From this information, we can derive some data patterns that produce useful ECC combinations, such as ECC of all zeroes, all ones, only one bit set, and only one bit clear. Looking at the table above, we got lucky and examples of many of these combinations were found by chance. In particular, we happened upon data combinations that produced every possibility of 1 ECC bit set. These, combined with the fact that we can toggle bit 28 to get the inverse ECC bits, gives us a set of data patterns which produce ECC with only one bit clear. From here, we only need to derive a combination which produces all-zero ECC, and from that, derive all-one ECC.
Starting with the ECC for bit 31 set, we can toggle single bits at a time until we find a combination that produces the ECC we want.
31 1000 0000 0000 0000 0000 0000 0000 0000 1000101
1000 0000 0000 0000 0000 0000 0000 0001 0011101 1000 0000 0000 0000 0000 0010 0000 0001 0110001 1000 0000 1000 0000 0000 0010 0000 0001 0000000 <-- 1001 0000 1000 0000 0000 0010 0000 0001 1111111 <--
The summary of these useful ECC combinations is tabulated below (data in hex, ECC in binary)
useful ECC combinations: ECC data 0000000 80800201 0000001 40000000 0000010 08000000 0000100 01000000 0001000 00020000 0010000 00000200 0100000 00000002 1000000 02000000 1111111 90800201 1111110 50000000 1111101 18000000 1111011 11000000 1110111 10020000 1101111 10000200 1011111 10000002 0111111 12000000
KA650 VAX FIRMWARE MEMORY TESTS
Many of the tests built in to the firmware of the VAX can be quite thorough, if used properly. The tests can be accessed by the TEST command in the monitor, abbreviated to 't'.
The tests report diagnostic information upon failure, encoded simply as a number of values in registers and memory locations on the stack. With the proper documentation, these values could be decoded to determine the problem. Lacking that documentation, I was able to reverse engineer enough of one test that was failing to understand it's ouput.
TEST 48: MEM_Addr_shrts This test is normally used to check for shorted address lines. It will fill the memory with a pattern first, then it will check each word in order to see if it is still the same pattern. After checking a word, it will check the CMCTL status register to ensure there were no detected errors. Then it will replace the word with another pattern (usually mostly an inverse of the first pattern).
If any address line is shorted, when the test writes the second pattern, it will affect another location in memory. When that location is encountered, it will read as the wrong data thus showing the issue. However, the test is also capable of detecting stuck bits the way it is designed, and this test happened to find all DRAM errors in my case.
The output when the test encounters an error looks like the following:
>>>t 48
?48 2 08 FF 00 0002
P1=00000000 P2=04000000 P3=00000004 P4=00031000 P5=AAAAAAAA P6=55555555 P7=00000043 P8=200C5875 P9=00000000 P10=2005311F r0=45555555 r1=000C5860 r2=45555555 r3=00000004 r4=0000006B r5=AAAAAAAA r6=20080140 r7=20080144 r8=00000000 ERF=80000000
Normal operation not possible.
>>>
I figured out the meaning of some of these registers for this test. First of all, P10 indicates an address where presumably DEC personnel would check a source listing to find out the exact meaning of the rest of the values shown. The meanings of the registers I have found are only valid for this routine, located near 2005311F.
r0 - contents of memory at address being tested r1 - address being tested r2 - expected pattern from memory being tested r5 - pattern to replace location with r6 - address of CMCTL MEMCSR16 (a diagnostic register) P8 - contents of MEMCSR16
MEMCSR16 REGISTER
The MEMCSR16 register gives us information on what kind of memory failure occurred. The bit meanings are as follows, according the the KA650 technical manual:
<31> set if uncorrectable error occurred <30> set if multiple uncorrectable errors occurred <29> set if correctable error occurred <28:9> page address where error occurred (pages are 512 bytes) <8> set if error ocurred during DMA <7> set if CDAL bus parity error occurred <6:0> error syndrome: a unique combination is produced here for each possible
single bit error
writing 1s to bits 31, 30, 29, 8, or 7 of MEMCSR16 resets those bits. bits 28:9 and 6:0 are read only.
The MEMCSR registers can be read with test 9c.
The error syndrome is particularly useful for troubleshooting memory errors as it can tell us exactly which bit had the error. A list of the syndromes and the corresponding bit error is given below, copied and resorted from the KA650 tech manual for convenience.
syndrome bit position 0000000 no error 0000001 32 0000010 33 0000100 34 0000111 result of incorrect check bits written on CDAL parity error 0001000 35 0010000 36 0011001 7 0011010 2 0011100 1 0011111 4 0100000 37 0101001 15 0101010 10 0101100 9 0101111 12 0110001 23 0110010 18 0110100 17 0110111 20 0111000 24 0111011 29 0111101 30 0111110 27 1000000 38 1011000 0 1011011 5 1011101 6 1011110 3 1101000 8 1101011 13 1101101 14 1101110 11 1110000 16 1110011 21 1110101 22 1110110 19 1111001 31 1111010 26 1111100 25 1111111 28
ELSE multibit error
TROUBLESHOOTING
We now have all of the information necessary to narrow down which bits in which address regions are bad. However, that doesn't do any good for repair unless we also know which physical DRAMs that bit and region correspond to.
Shown below is a diagram of the MS650-AA RAM card, broken up into 11 columns and 37 rows. Each spot in this grid contains up to 1 DRAM, but some locations contain other circuitry instead.
| A | B | C | D | E | F | G | H | I | J | K | --------------------------------------------------------------------------------
01 | ooooooooooooooooooooooooo |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 01
| --------- --------- --------- --------- |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| | |BBBBBBB| |BBBBBBB| |BBBBBBB| |BBBBBBB| |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| | |BBBBBBB| |BBBBBBB| |BBBBBBB| |BBBBBBB| |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
08 | --------- --------- --------- --------- |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 08
|-------------------------------------------DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
09 |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 09
|DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
16 |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 16 17 |DDDDDDD-----------------------------DDDDDDDDDDDDD-----------------------------| 17 18 |DDDDDDD|TTTTTTT TTTTTTTTT TTTTTTTT |DDDDDDDDDDDDD|TTTTTTTT TTTTTTTTT TTTTTTTT | 18 19 |DDDDDDD-----------------------------DDDDDDDDDDDDD-----------------------------| 19 20 |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 20
|DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD|
32 |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 32 33 |DDDDDDD-----------------------------DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 33 36 |DDDDDDD| PPPPPPP TTTTT TTTTT |DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD| 35 37 |-------- TTTTTTT TTTTTTT --------DDDDDDDDDDDDDD-------DDDDDDDDDDDDDD| 37
| -------------- --------------| | ___- - ___- | | | | || | | | -------------------- ---------------------------------------------------------- | A | B | C | D | E | F | G | H | I | J | K |
| D DRAMS | | T TTL IC | | B some kind of DEC custom fast data buffer? | | P PAL16L8 | | o data connector | | | border | | - border |
The RAM card uses two RAS lines. During normal initialization of the VAX, the bank connected to RAS0 will be first in memory, followed by the bank connected to RAS1.
RAS0 - first 4MB RAS1 - second 4MB
Based on the bit with the error, as well as the memory region where the error occurred, the specific DRAM with the failure can be found and replaced.
Below is a list of the DRAMs sorted by memory region and bit, showing the grid location of the DRAM IC.
By using the built in tests, along with MEMCSR16, and perhaps some manual DEPOSIT and EXAMINE testing, the bad DRAM should be possible to locate and then, using this table, the DRAM can be replaced.
A12 - 0XXXXX MD00
A11 - 1XXXXX MD00
A10 - 2XXXXX MD00
A09 - 3XXXXX MD00
A16 - 4XXXXX MD00
A15 - 5XXXXX MD00
A14 - 6XXXXX MD00
A13 - 7XXXXX MD00
A24 - 0XXXXX MD01
A23 - 1XXXXX MD01
A22 - 2XXXXX MD01
A21 - 3XXXXX MD01
A20 - 4XXXXX MD01
A19 - 5XXXXX MD01
A18 - 6XXXXX MD01
A17 - 7XXXXX MD01
A32 - 0XXXXX MD02
A31 - 1XXXXX MD02
A30 - 2XXXXX MD02
A29 - 3XXXXX MD02
A28 - 4XXXXX MD02
A27 - 5XXXXX MD02
A26 - 6XXXXX MD02
A25 - 7XXXXX MD02
B12 - 0XXXXX MD03
B11 - 1XXXXX MD03
B10 - 2XXXXX MD03
B09 - 3XXXXX MD03
A36 - 4XXXXX MD03
A35 - 5XXXXX MD03
A34 - 6XXXXX MD03
A33 - 7XXXXX MD03
B24 - 0XXXXX MD04
B23 - 1XXXXX MD04
B22 - 2XXXXX MD04
B21 - 3XXXXX MD04
B16 - 4XXXXX MD04
B15 - 5XXXXX MD04
B14 - 6XXXXX MD04
B13 - 7XXXXX MD04
B32 - 0XXXXX MD05
B31 - 1XXXXX MD05
B30 - 2XXXXX MD05
B29 - 3XXXXX MD05
B28 - 4XXXXX MD05
B27 - 5XXXXX MD05
B26 - 6XXXXX MD05
B25 - 7XXXXX MD05
C12 - 0XXXXX MD06
C11 - 1XXXXX MD06
C10 - 2XXXXX MD06
C09 - 3XXXXX MD06
C16 - 4XXXXX MD06
C15 - 5XXXXX MD06
C14 - 6XXXXX MD06
C13 - 7XXXXX MD06
C24 - 0XXXXX MD07
C23 - 1XXXXX MD07
C22 - 2XXXXX MD07
C21 - 3XXXXX MD07
E20 - 4XXXXX MD07
D20 - 5XXXXX MD07
C20 - 6XXXXX MD07
B20 - 7XXXXX MD07
C32 - 0XXXXX MD08
C31 - 1XXXXX MD08
C30 - 2XXXXX MD08
C29 - 3XXXXX MD08
C28 - 4XXXXX MD08
C27 - 5XXXXX MD08
C26 - 6XXXXX MD08
C25 - 7XXXXX MD08
D32 - 0XXXXX MD09
D31 - 1XXXXX MD09
D30 - 2XXXXX MD09
D29 - 3XXXXX MD09
D28 - 4XXXXX MD09
D27 - 5XXXXX MD09
D26 - 6XXXXX MD09
D25 - 7XXXXX MD09
D24 - 0XXXXX MD10
D23 - 1XXXXX MD10
D22 - 2XXXXX MD10
D21 - 3XXXXX MD10
D16 - 4XXXXX MD10
D15 - 5XXXXX MD10
D14 - 6XXXXX MD10
D13 - 7XXXXX MD10
D12 - 0XXXXX MD11
D11 - 1XXXXX MD11
D10 - 2XXXXX MD11
D09 - 3XXXXX MD11
E16 - 4XXXXX MD11
E15 - 5XXXXX MD11
E14 - 6XXXXX MD11
E13 - 7XXXXX MD11
E12 - 0XXXXX MD12
E11 - 1XXXXX MD12
E10 - 2XXXXX MD12
E09 - 3XXXXX MD12
E28 - 4XXXXX MD12
E27 - 5XXXXX MD12
E26 - 6XXXXX MD12
E25 - 7XXXXX MD12
E24 - 0XXXXX MD13
E23 - 1XXXXX MD13
E22 - 2XXXXX MD13
E21 - 3XXXXX MD13
F16 - 4XXXXX MD13
F15 - 5XXXXX MD13
F14 - 6XXXXX MD13
F13 - 7XXXXX MD13
E32 - 0XXXXX MD14
E31 - 1XXXXX MD14
E30 - 2XXXXX MD14
E29 - 3XXXXX MD14
F20 - 4XXXXX MD14
F19 - 5XXXXX MD14
F18 - 6XXXXX MD14
F17 - 7XXXXX MD14
F32 - 0XXXXX MD15
F31 - 1XXXXX MD15
F30 - 2XXXXX MD15
F29 - 3XXXXX MD15
F28 - 4XXXXX MD15
F27 - 5XXXXX MD15
F26 - 6XXXXX MD15
F25 - 7XXXXX MD15
F24 - 0XXXXX MD16
F23 - 1XXXXX MD16
F22 - 2XXXXX MD16
F21 - 3XXXXX MD16
F36 - 4XXXXX MD16
F35 - 5XXXXX MD16
F34 - 6XXXXX MD16
F33 - 7XXXXX MD16
G32 - 0XXXXX MD17
G31 - 1XXXXX MD17
G30 - 2XXXXX MD17
G29 - 3XXXXX MD17
G36 - 4XXXXX MD17
G35 - 5XXXXX MD17
G34 - 6XXXXX MD17
G33 - 7XXXXX MD17
G24 - 0XXXXX MD18
G23 - 1XXXXX MD18
G22 - 2XXXXX MD18
G21 - 3XXXXX MD18
G28 - 4XXXXX MD18
G27 - 5XXXXX MD18
G26 - 6XXXXX MD18
G25 - 7XXXXX MD18
H32 - 0XXXXX MD19
H31 - 1XXXXX MD19
H30 - 2XXXXX MD19
H29 - 3XXXXX MD19
G20 - 4XXXXX MD19
G19 - 5XXXXX MD19
G18 - 6XXXXX MD19
G17 - 7XXXXX MD19
H24 - 0XXXXX MD20
H23 - 1XXXXX MD20
H22 - 2XXXXX MD20
H21 - 3XXXXX MD20
K37 - 4XXXXX MD20
J37 - 5XXXXX MD20
H37 - 6XXXXX MD20
G37 - 7XXXXX MD20
I32 - 0XXXXX MD21
I31 - 1XXXXX MD21
I30 - 2XXXXX MD21
I29 - 3XXXXX MD21
H36 - 4XXXXX MD21
H35 - 5XXXXX MD21
H34 - 6XXXXX MD21
H33 - 7XXXXX MD21
I24 - 0XXXXX MD22
I23 - 1XXXXX MD22
I22 - 2XXXXX MD22
I21 - 3XXXXX MD22
H28 - 4XXXXX MD22
H27 - 5XXXXX MD22
H26 - 6XXXXX MD22
H25 - 7XXXXX MD22
J32 - 0XXXXX MD23
J31 - 1XXXXX MD23
J30 - 2XXXXX MD23
J29 - 3XXXXX MD23
I36 - 4XXXXX MD23
I35 - 5XXXXX MD23
I34 - 6XXXXX MD23
I33 - 7XXXXX MD23
J24 - 0XXXXX MD24
J23 - 1XXXXX MD24
J22 - 2XXXXX MD24
J21 - 3XXXXX MD24
I28 - 4XXXXX MD24
I27 - 5XXXXX MD24
I26 - 6XXXXX MD24
I25 - 7XXXXX MD24
K32 - 0XXXXX MD25
K31 - 1XXXXX MD25
K30 - 2XXXXX MD25
K29 - 3XXXXX MD25
J36 - 4XXXXX MD25
J35 - 5XXXXX MD25
J34 - 6XXXXX MD25
J33 - 7XXXXX MD25
K24 - 0XXXXX MD26
K23 - 1XXXXX MD26
K22 - 2XXXXX MD26
K21 - 3XXXXX MD26
J28 - 4XXXXX MD26
J27 - 5XXXXX MD26
J26 - 6XXXXX MD26
J25 - 7XXXXX MD26
K20 - 0XXXXX MD27
J20 - 1XXXXX MD27
I20 - 2XXXXX MD27
H20 - 3XXXXX MD27
K36 - 4XXXXX MD27
K35 - 5XXXXX MD27
K34 - 6XXXXX MD27
K33 - 7XXXXX MD27
F12 - 0XXXXX MD28
F11 - 1XXXXX MD28
F10 - 2XXXXX MD28
F09 - 3XXXXX MD28
K28 - 4XXXXX MD28
K26 - 6XXXXX MD28
K27 - 5XXXXX MD28
K25 - 7XXXXX MD28
G12 - 0XXXXX MD29
G11 - 1XXXXX MD29
G10 - 2XXXXX MD29
G09 - 3XXXXX MD29
G16 - 4XXXXX MD29
G15 - 5XXXXX MD29
G14 - 6XXXXX MD29
G13 - 7XXXXX MD29
G04 - 0XXXXX MD30
G03 - 1XXXXX MD30
G02 - 2XXXXX MD30
G01 - 3XXXXX MD30
G08 - 4XXXXX MD30
G07 - 5XXXXX MD30
G06 - 6XXXXX MD30
G05 - 7XXXXX MD30
H04 - 0XXXXX MD31
H03 - 1XXXXX MD31
H02 - 2XXXXX MD31
H01 - 3XXXXX MD31
H08 - 4XXXXX MD31
H07 - 5XXXXX MD31
H06 - 6XXXXX MD31
H05 - 7XXXXX MD31
H12 - 0XXXXX MD32
H11 - 1XXXXX MD32
H10 - 2XXXXX MD32
H09 - 3XXXXX MD32
H16 - 4XXXXX MD32
H15 - 5XXXXX MD32
H14 - 6XXXXX MD32
H13 - 7XXXXX MD32
I04 - 0XXXXX MD33
I03 - 1XXXXX MD33
I02 - 2XXXXX MD33
I01 - 3XXXXX MD33
I08 - 4XXXXX MD33
I07 - 5XXXXX MD33
I06 - 6XXXXX MD33
I05 - 7XXXXX MD33
I12 - 0XXXXX MD34
I11 - 1XXXXX MD34
I10 - 2XXXXX MD34
I09 - 3XXXXX MD34
I16 - 4XXXXX MD34
I15 - 5XXXXX MD34
I14 - 6XXXXX MD34
I13 - 7XXXXX MD34
J04 - 0XXXXX MD35
J03 - 1XXXXX MD35
J02 - 2XXXXX MD35
J01 - 3XXXXX MD35
J08 - 4XXXXX MD35
J07 - 5XXXXX MD35
J06 - 6XXXXX MD35
J05 - 7XXXXX MD35
J12 - 0XXXXX MD36
J11 - 1XXXXX MD36
J10 - 2XXXXX MD36
J09 - 3XXXXX MD36
J16 - 4XXXXX MD36
J15 - 5XXXXX MD36
J14 - 6XXXXX MD36
J13 - 7XXXXX MD36
K04 - 0XXXXX MD37
K03 - 1XXXXX MD37
K02 - 2XXXXX MD37
K01 - 3XXXXX MD37
K08 - 4XXXXX MD37
K07 - 5XXXXX MD37
K06 - 6XXXXX MD37
K05 - 7XXXXX MD37
K12 - 0XXXXX MD38
K11 - 1XXXXX MD38
K10 - 2XXXXX MD38
K09 - 3XXXXX MD38
K16 - 4XXXXX MD38
K15 - 5XXXXX MD38
K14 - 6XXXXX MD38
K13 - 7XXXXX MD38