RX01/02 floppy drive
The RX01 and RX02 floppy drives use 8" floppies, compatible with the IBM 3740 floppy drive. The media are single-sided, single-density, floppies, which come pre-formatted. (The RX0x drives are not capable of formatting blank floppies.) Each drive cabinet holds a pair of drives.
The drives are mostly identical, except that the RX02 supports optional double-density operation. This double-density is not the same as the 'normal' double-density 8" floppy, but a unique-to-DEC format. Both drives provide 26 sectors per track (1-26), and 77 tracks per floppy (0-76), for a total of 2002 sectors. Single-density sectors hold 128 bytes, and double-density sectors hold 256 bytes.
Single-density recording uses a double frequency (FM) coding (compatible with IBM 3740 devices), and double-density uses a modified Miller code (MFM). In an especially bizarre design choice, in both single- and double-density media, the sector headers are all recorded using FM coding; on double-density media, the data portions of sectors are recorded with MFM.
Both drives have UNIBUS and QBUS controllers; the RX11 and RX211 for the UNIBUS, and RXV11 and RXV21 for the QBUS. The first of each pair are for the RX01, and are programmed I/O; the latter are for the RX02, and provide DMA data transfer. The maximum number of drives supported by a single controller is two.
The RX02 can be strapped to emulate an RX01, in which case the RX01 controllers (RX11 and RXV11) can support them.
Coding systems
In the single-density double frequency (FM) coding, there is a flux reversal every clock time, and an additional flux reversal in the middle of the bit for a '1' bit; for '0' bits, there is no flux reversal. In the double-density Miller coding (MFM), a flux reversal indicates a '1' bit, and no flux reversal indicates a '0'; a clock is recorded only between data 'zeros'.
Since the maximum flux reversal rates are the same for FM, and MFM with a data rate double that of the FM, the same hardware can thus hold twice as many bits with the MFM coding.
v • d • e PDP-11 Computers and Peripherals |
---|
UNIBUS PDP-11s - PDP-11/20 • PDP-11/15 • PDP-11/35 • PDP-11/40 • PDP-11/45 • PDP-11/50 • PDP-11/55 • PDP-11/70 PDP-11/05 • PDP-11/10 • PDP-11/04 • PDP-11/34 • PDP-11/60 • PDP-11/44 • PDP-11/24 • PDP-11/84 • PDP-11/94 QBUS PDP-11s - PDP-11/03 • PDP-11/23 • PDP-11/23+ • MicroPDP-11/73 • MicroPDP-11/53 • MicroPDP-11/83 • MicroPDP-11/93 QBUS CPUs: LSI-11 • LSI-11/2 • KDF11-A • KDF11-B • KDJ11-A • KDJ11-B • KDJ11-D • KDJ11-E Buses: UNIBUS • UNIBUS map • SPC • MUD • EUB • QBUS • CD interconnect • PMI Also: PDP-11 architecture • PDP-11 Extended Instruction Set • FP11 floating point • PDP-11 Memory Management |
UNIBUS CPUs: KA11 • KC11 • KB11-A • KB11-B • KB11-C • KB11-D • KD11-A • KD11-B • KD11-D • KD11-E • KD11-EA • KD11-K • KD11-Z • KDF11-U
Co-processors: FP11-A • FP11-B • FP11-C • FP11-E • FP11-F • KE44-A • FPF11 Chips: LSI-11 • KEV11-A • KEV11-B • KEV11-C • F-11 • KEF11-A • KTF11-A • T-11 • J-11 • FPJ11 CPU options: KE11-E • KE11-F • KJ11-A • KT11-C • KT11-D • KK11-A • KK11-B • KT24 • KTJ11-B Rare CPU options: KS11 Memory Protection and Relocation option • KT11-B Paging Option • KUV11 Writeable Control Store Front panels: KY11-A • KY11-D • KY11-J • KY11-LA • KY11-LB • KY11-P More on buses: UNIBUS and QBUS termination • Bus Arbitration on the Unibus and QBUS • CTI BUS PDT-11s - PDT-11/110 • PDT-11/130 • PDT-11/150 CTI PDP-11s - PRO-325 • PRO-350 • PRO-380 Other: FIS floating point • PDP-11 Commercial Instruction Set • PDP-11 stacks • PDP-11 family differences |